18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Carbon Footprint of Bioinformatics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified the environmental costs of bioinformatic tools and commonly run analyses. In this work, we estimate the carbon footprint of bioinformatics (in kilograms of CO 2 equivalent units, kgCO 2e) using the freely available Green Algorithms calculator ( www.green-algorithms.org, last accessed 2022). We assessed 1) bioinformatic approaches in genome-wide association studies (GWAS), RNA sequencing, genome assembly, metagenomics, phylogenetics, and molecular simulations, as well as 2) computation strategies, such as parallelization, CPU (central processing unit) versus GPU (graphics processing unit), cloud versus local computing infrastructure, and geography. In particular, we found that biobank-scale GWAS emitted substantial kgCO 2e and simple software upgrades could make it greener, for example, upgrading from BOLT-LMM v1 to v2.3 reduced carbon footprint by 73%. Moreover, switching from the average data center to a more efficient one can reduce carbon footprint by approximately 34%. Memory over-allocation can also be a substantial contributor to an algorithm’s greenhouse gas emissions. The use of faster processors or greater parallelization reduces running time but can lead to greater carbon footprint. Finally, we provide guidance on how researchers can reduce power consumption and minimize kgCO 2e. Overall, this work elucidates the carbon footprint of common analyses in bioinformatics and provides solutions which empower a move toward greener research.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          STAR: ultrafast universal RNA-seq aligner.

          Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80-90% success rate, corroborating the high precision of the STAR mapping strategy. STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from http://code.google.com/p/rna-star/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Basic local alignment search tool.

            A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score. Recent mathematical results on the stochastic properties of MSP scores allow an analysis of the performance of this method as well as the statistical significance of alignments it generates. The basic algorithm is simple and robust; it can be implemented in a number of ways and applied in a variety of contexts including straightforward DNA and protein sequence database searches, motif searches, gene identification searches, and in the analysis of multiple regions of similarity in long DNA sequences. In addition to its flexibility and tractability to mathematical analysis, BLAST is an order of magnitude faster than existing sequence comparison tools of comparable sensitivity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies

              Motivation: Phylogenies are increasingly used in all fields of medical and biological research. Moreover, because of the next-generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. RAxML (Randomized Axelerated Maximum Likelihood) is a popular program for phylogenetic analyses of large datasets under maximum likelihood. Since the last RAxML paper in 2006, it has been continuously maintained and extended to accommodate the increasingly growing input datasets and to serve the needs of the user community. Results: I present some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees. In addition, an up-to-date 50-page user manual covering all new RAxML options is available. Availability and implementation: The code is available under GNU GPL at https://github.com/stamatak/standard-RAxML. Contact: alexandros.stamatakis@h-its.org Supplementary information: Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Contributors
                Role: Associate Editor
                Journal
                Mol Biol Evol
                Mol Biol Evol
                molbev
                Molecular Biology and Evolution
                Oxford University Press
                0737-4038
                1537-1719
                March 2022
                10 February 2022
                10 February 2022
                : 39
                : 3
                : msac034
                Affiliations
                [1 ] Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute , Melbourne, VIC, Australia
                [2 ] Department of Mathematics and Statistics, La Trobe University , Melbourne, VIC, Australia
                [3 ] Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge , Cambridge, United Kingdom
                [4 ] British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge , Cambridge, United Kingdom
                [5 ] Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge , Cambridge, United Kingdom
                [6 ] Department of Infectious Diseases, Central Clinical School, Monash University , Melbourne, VIC, Australia
                [7 ] British Heart Foundation Centre of Research Excellence, University of Cambridge , Cambridge, United Kingdom
                [8 ] The Alan Turing Institute , London, United Kingdom
                Author notes
                [†]

                Jason Grealey, Loïc Lannelongue contributed equally to this work as first authors.

                [‡]

                Present address: Genomics PLC, King Charles House, Park End Street, Oxford, United Kingdom

                Author information
                https://orcid.org/0000-0002-9135-1345
                Article
                msac034
                10.1093/molbev/msac034
                8892942
                35143670
                4cd32d6c-e186-4a88-9889-38c42ae2b599
                © The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 15
                Categories
                Discoveries
                AcademicSubjects/SCI01130
                AcademicSubjects/SCI01180

                Molecular biology
                carbon footprint,bioinformatics,genomics,green algorithms
                Molecular biology
                carbon footprint, bioinformatics, genomics, green algorithms

                Comments

                Comment on this article