13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fate of the H-NS–Repressed bgl Operon in Evolution of Escherichia coli

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the enterobacterial species Escherichia coli and Salmonella enterica, expression of horizontally acquired genes with a higher than average AT content is repressed by the nucleoid-associated protein H-NS. A classical example of an H-NS–repressed locus is the bgl (aryl-β,D-glucoside) operon of E. coli. This locus is “cryptic,” as no laboratory growth conditions are known to relieve repression of bgl by H-NS in E. coli K12. However, repression can be relieved by spontaneous mutations. Here, we investigated the phylogeny of the bgl operon. Typing of bgl in a representative collection of E. coli demonstrated that it evolved clonally and that it is present in strains of the phylogenetic groups A, B1, and B2, while it is presumably replaced by a cluster of ORFans in the phylogenetic group D. Interestingly, the bgl operon is mutated in 20% of the strains of phylogenetic groups A and B1, suggesting erosion of bgl in these groups. However, bgl is functional in almost all B2 isolates and, in approximately 50% of them, it is weakly expressed at laboratory growth conditions. Homologs of bgl genes exist in Klebsiella, Enterobacter, and Erwinia species and also in low GC-content Gram-positive bacteria, while absent in E. albertii and Salmonella sp. This suggests horizontal transfer of bgl genes to an ancestral Enterobacterium. Conservation and weak expression of bgl in isolates of phylogenetic group B2 may indicate a functional role of bgl in extraintestinal pathogenic E. coli.

          Author Summary

          Horizontal gene transfer, an important mechanism in bacterial adaptation and evolution, requires mechanisms to avoid uncontrolled and possibly disadvantageous expression of the transferred genes. Recently, it was shown that the protein H-NS selectively silences genes gained by horizontal transfer in enteric bacteria. Regulated expression of these genes can then evolve and be integrated into the regulatory network of the new host. Our analysis of the catabolic bgl (aryl-β,D-glucoside) operon, which is silenced by H-NS in E. coli, provides a snapshot on the evolution of such a locus. Genes of the bgl operon were presumably gained by horizontal transfer from Gram-positive bacteria to ancestral enteric bacteria. In E. coli, the bgl operon co-evolved with the diversification of the species into four phylogenetic groups. In one phylogenetic group the bgl operon is functional. However, in two other phylogenetic groups, bgl accumulates disrupting mutations, and it is absent in the fourth group. This indicates that the H-NS–silenced bgl operon evolved differently in E. coli and is presumably positively selected in one phylogenetic group, while it is neutrally or negatively selected in the other groups.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli.

          We present the complete genome sequence of uropathogenic Escherichia coli, strain CFT073. A three-way genome comparison of the CFT073, enterohemorrhagic E. coli EDL933, and laboratory strain MG1655 reveals that, amazingly, only 39.2% of their combined (nonredundant) set of proteins actually are common to all three strains. The pathogen genomes are as different from each other as each pathogen is from the benign strain. The difference in disease potential between O157:H7 and CFT073 is reflected in the absence of genes for type III secretion system or phage- and plasmid-encoded toxins found in some classes of diarrheagenic E. coli. The CFT073 genome is particularly rich in genes that encode potential fimbrial adhesins, autotransporters, iron-sequestration systems, and phase-switch recombinases. Striking differences exist between the large pathogenicity islands of CFT073 and two other well-studied uropathogenic E. coli strains, J96 and 536. Comparisons indicate that extraintestinal pathogenic E. coli arose independently from multiple clonal lineages. The different E. coli pathotypes have maintained a remarkable synteny of common, vertically evolved genes, whereas many islands interrupting this common backbone have been acquired by different horizontal transfer events in each strain.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Genomic islands in pathogenic and environmental microorganisms.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Universal Protein Resource (UniProt)

              The Universal Protein Resource (UniProt) provides a stable, comprehensive, freely accessible, central resource on protein sequences and functional annotation. The UniProt Consortium is a collaboration between the European Bioinformatics Institute (EBI), the Protein Information Resource (PIR) and the Swiss Institute of Bioinformatics (SIB). The core activities include manual curation of protein sequences assisted by computational analysis, sequence archiving, development of a user-friendly UniProt website, and the provision of additional value-added information through cross-references to other databases. UniProt is comprised of four major components, each optimized for different uses: the UniProt Knowledgebase, the UniProt Reference Clusters, the UniProt Archive and the UniProt Metagenomic and Environmental Sequences database. UniProt is updated and distributed every three weeks, and can be accessed online for searches or download at http://www.uniprot.org.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                March 2009
                March 2009
                6 March 2009
                : 5
                : 3
                : e1000405
                Affiliations
                [1 ]Institute for Genetics, University of Cologne, Cologne, Germany
                [2 ]Department of Molecular Biology, Max-Planck Institute for Infection Biology, Berlin, Germany
                [3 ]Department of Microbiology and Environmental Research Institute, University College Cork, Cork, Ireland
                [4 ]Institute for Medical Microbiology, Immunology, and Hygiene, University of Cologne, Cologne, Germany
                Universidad de Sevilla, Spain
                Author notes
                [¤]

                Current address: Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America

                Conceived and designed the experiments: TSS GN MA KS. Performed the experiments: TSS GN VS KS. Analyzed the data: TSS GN VS KS. Contributed reagents/materials/analysis tools: VS GP MA. Wrote the paper: TSS KS. Set up the collection of E. coli strains: GP.

                Article
                08-PLGE-RA-1226R2
                10.1371/journal.pgen.1000405
                2646131
                19266030
                4fb11855-5fbd-4e49-87ae-2a70e60ba7f8
                Sankar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 16 September 2008
                : 5 February 2009
                Page count
                Pages: 11
                Categories
                Research Article
                Evolutionary Biology/Microbial Evolution and Genomics
                Genetics and Genomics/Microbial Evolution and Genomics
                Microbiology/Microbial Evolution and Genomics

                Genetics
                Genetics

                Comments

                Comment on this article