1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Molecular Biology of B Cells 

      Development and Function of B Cell Subsets

      edited-book

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references222

          • Record: found
          • Abstract: found
          • Article: not found

          Somatic generation of antibody diversity.

          In the genome of a germ-line cell, the genetic information for an immunoglobulin polypeptide chain is contained in multiple gene segments scattered along a chromosome. During the development of bone marrow-derived lymphocytes, these gene segments are assembled by recombination which leads to the formation of a complete gene. In addition, mutations are somatically introduced at a high rate into the amino-terminal region. Both somatic recombination and mutation contribute greatly to an increase in the diversity of antibody synthesized by a single organism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Germinal centers.

            Germinal centers (GCs) were described more than 125 years ago as compartments within secondary lymphoid organs that contained mitotic cells. Since then, it has become clear that this structure is the site of B cell clonal expansion, somatic hypermutation, and affinity-based selection, the combination of which results in the production of high-affinity antibodies. Decades of anatomical and functional studies have led to an overall model of how the GC reaction and affinity-based selection operate. More recently, the introduction of intravital imaging into the GC field has opened the door to direct investigation of certain key dynamic features of this microanatomic structure, sparking renewed interest in the relationship between cell movement and affinity maturation. We review these and other recent advances in our understanding of GCs, focusing on cellular dynamics and on the mechanism of selection of high-affinity B cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene.

              Of the various classes of antibodies that B lymphocytes can produce, class M (IgM) is the first to be expressed on the membrane of the developing cells. Pre-B cells, the precursors of B-lymphocytes, produce the heavy chain of IgM (mu chain), but not light chains. Recent data suggest that pre-B cells express mu chains on the membrane together with the 'surrogate' light chains lambda 5 and V pre B (refs 2-7). This complex could control pre-B-cell differentiation, in particular the rearrangement of the light-chain genes. We have now assessed the importance of the membrane form of the mu chain in B-cell development by generating mice lacking this chain. We disrupted one of the membrane exons of the gene encoding the mu-chain constant region by gene targeting in mouse embryonic stem cells. From these cells we derived mice heterozygous or homozygous for the mutation. B-cell development in the heterozygous mice seemed to be normal, but in homozygous animals B cells were absent, their development already being arrested at the stage of pre-B-cell maturation.
                Bookmark

                Author and book information

                Book Chapter
                2015
                : 99-119
                10.1016/B978-0-12-397933-9.00007-2
                50c0f115-8b2f-44a0-8020-7417f350d532
                History

                Comments

                Comment on this book