109
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Amyloid-β Forms Fibrils by Nucleated Conformational Conversion of Oligomers

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aβ amyloidogenesis is reported to occur via a nucleated polymerization mechanism, if so the energetically unfavorable oligomeric nucleus should be very hard to detect. However, many laboratories have detected early non-fibrillar Aβ oligomers without observing amyloid fibrils, suggesting a mechanistic revision may be needed. Herein, we introduce Cys-Cys-Aβ 1-40 that cannot bind to the latent fluorophore FlAsH as a monomer, but is capable of binding FlAsH as an non-fibrillar oligomer or as a fibril, rendering the conjugates fluorescent. FlAsH monitoring of Cys-Cys-Aβ 1-40 aggregation provides compelling evidence that Aβ 1-40 very rapidly and efficiently forms spherical oligomers in vitro (85% yield) that are kinetically competent to slowly convert to amyloid fibrils by a nucleated conformational conversion mechanism (seedable). Moreover, this methodology demonstrated that plasmalogen ethanolamine vesicles eliminate the proteotoxicity-associated oligomerization phase of Aβ amyloidogenesis, while allowing fibril formation, rationalizing how low plasmalogen ethanolamine levels in the brain are epidemiologically linked to Alzheimer’s disease.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis.

          Soluble oligomers are common to most amyloids and may represent the primary toxic species of amyloids, like the Abeta peptide in Alzheimer's disease (AD). Here we show that all of the soluble oligomers tested display a common conformation-dependent structure that is unique to soluble oligomers regardless of sequence. The in vitro toxicity of soluble oligomers is inhibited by oligomer-specific antibody. Soluble oligomers have a unique distribution in human AD brain that is distinct from fibrillar amyloid. These results indicate that different types of soluble amyloid oligomers have a common structure and suggest they share a common mechanism of toxicity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A specific amyloid-beta protein assembly in the brain impairs memory.

            Memory function often declines with age, and is believed to deteriorate initially because of changes in synaptic function rather than loss of neurons. Some individuals then go on to develop Alzheimer's disease with neurodegeneration. Here we use Tg2576 mice, which express a human amyloid-beta precursor protein (APP) variant linked to Alzheimer's disease, to investigate the cause of memory decline in the absence of neurodegeneration or amyloid-beta protein amyloidosis. Young Tg2576 mice ( 14 months old) form abundant neuritic plaques containing amyloid-beta (refs 3-6). We found that memory deficits in middle-aged Tg2576 mice are caused by the extracellular accumulation of a 56-kDa soluble amyloid-beta assembly, which we term Abeta*56 (Abeta star 56). Abeta*56 purified from the brains of impaired Tg2576 mice disrupts memory when administered to young rats. We propose that Abeta*56 impairs memory independently of plaques or neuronal loss, and may contribute to cognitive deficits associated with Alzheimer's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: detection of amyloid aggregation in solution.

              H. Levine (1993)
              Thioflavine T (ThT) associates rapidly with aggregated fibrils of the synthetic beta/A4-derived peptides beta(1-28) and beta(1-40), giving rise to a new excitation (ex) (absorption) maximum at 450 nm and enhanced emission (em) at 482 nm, as opposed to the 385 nm (ex) and 445 nm (em) of the free dye. This change is dependent on the aggregated state as monomeric or dimeric peptides do not react, and guanidine dissociation of aggregates destroys the signal. There was no effect of high salt concentrations. Binding to the beta(1-40) is of lower affinity, Kd 2 microM, while it saturates with a Kd of 0.54 microM for beta(1-28). Insulin fibrils converted to a beta-sheet conformation fluoresce intensely with ThT. A variety of polyhydroxy, polyanionic, or polycationic materials fail to interact or impede interaction with the amyloid peptides. This fluorometric technique should allow the kinetic elucidation of the amyloid fibril assembly process as well as the testing of agents that might modulate their assembly or disassembly.
                Bookmark

                Author and article information

                Journal
                101231976
                32624
                Nat Chem Biol
                Nature chemical biology
                1552-4450
                1552-4469
                15 June 2011
                31 July 2011
                1 March 2012
                : 7
                : 9
                : 602-609
                Affiliations
                Departments of Chemistry and Molecular and Experimental Medicine, The Scripps Research Institute and The Skaggs Institute for Chemical Biology. 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
                Author notes

                AUTHOR CONTRIBUTIONS J. L. designed and performed experiments, analyzed data and wrote the paper. E.K.C. performed experiments and wrote the paper. E.T.P and J.W.K. designed experiments, analyzed data and wrote the paper.

                Article
                nihpa301946
                10.1038/nchembio.624
                3158298
                21804535
                53e2a1cd-e17f-4bce-9653-bdc07e5bebf1

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Biochemistry
                Biochemistry

                Comments

                Comment on this article