72
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comprehensive transcriptomic study on horse gram ( Macrotyloma uniflorum): De novo assembly, functional characterization and comparative analysis in relation to drought stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Drought tolerance is an attribute maintained in plants by cross-talk between multiple and cascading metabolic pathways. Without a sequenced genome available for horse gram, it is difficult to comprehend such complex networks and intercalated genes associated with drought tolerance of horse gram ( Macrotyloma uniflorum). Therefore, de novo transcriptome discovery and associated analyses was done for this highly drought tolerant yet under exploited legume to decipher its genetic makeup.

          Results

          Eight samples comprising of shoot and root tissues of two horse gram genotypes (drought-sensitive; M-191 and drought-tolerant; M-249) were used for comparison under control and polyethylene glycol-induced drought stress conditions. Using Illumina sequencing technology, a total of 229,297,896 paired end read pairs were generated and utilized for de novo assembly of horse gram. Significant BLAST hits were obtained for 26,045 transcripts while, 3,558 transcripts had no hits but contained important conserved domains. A total of 21,887 unigenes were identified. SSRs containing sequences covered 16.25% of the transcriptome with predominant tri- and mono-nucleotides (43%). The total GC content of the transcriptome was found to be 43.44%. Under Gene Ontology response to stimulus, DNA binding and catalytic activity was highly expressed during drought stress conditions. Serine/threonine protein kinase was found to dominate in Enzyme Classification while pathways belonging to ribosome metabolism followed by plant pathogen interaction and plant hormone signal transduction were predominant in Kyoto Encyclopedia of Genes and Genomes analysis. Independent search on plant metabolic network pathways suggested valine degradation, gluconeogenesis and purine nucleotide degradation to be highly influenced under drought stress in horse gram. Transcription factors belonging to NAC, MYB-related, and WRKY families were found highly represented under drought stress. qRT-PCR validated the expression profile for 9 out of 10 genes analyzed in response to drought stress.

          Conclusions

          De novo transcriptome discovery and analysis has generated enormous information over horse gram genomics. The genes and pathways identified suggest efficient regulation leading to active adaptation as a basal defense response against drought stress by horse gram. The knowledge generated can be further utilized for exploring other underexploited plants for stress responsive genes and improving plant tolerance.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets.

          TGICL is a pipeline for analysis of large Expressed Sequence Tags (EST) and mRNA databases in which the sequences are first clustered based on pairwise sequence similarity, and then assembled by individual clusters (optionally with quality values) to produce longer, more complete consensus sequences. The system can run on multi-CPU architectures including SMP and PVM.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The impact of next-generation sequencing technology on genetics.

            If one accepts that the fundamental pursuit of genetics is to determine the genotypes that explain phenotypes, the meteoric increase of DNA sequence information applied toward that pursuit has nowhere to go but up. The recent introduction of instruments capable of producing millions of DNA sequence reads in a single run is rapidly changing the landscape of genetics, providing the ability to answer questions with heretofore unimaginable speed. These technologies will provide an inexpensive, genome-wide sequence readout as an endpoint to applications ranging from chromatin immunoprecipitation, mutation mapping and polymorphism discovery to noncoding RNA discovery. Here I survey next-generation sequencing technologies and consider how they can provide a more complete picture of how the genome shapes the organism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of plant desiccation tolerance.

              Anhydrobiosis ("life without water") is the remarkable ability of certain organisms to survive almost total dehydration. It requires a coordinated series of events during dehydration that are associated with preventing oxidative damage and maintaining the native structure of macromolecules and membranes. The preferential hydration of macromolecules is essential when there is still bulk water present, but replacement by sugars becomes important upon further drying. Recent advances in our understanding of the mechanism of anhydrobiosis include the downregulation of metabolism, dehydration-induced partitioning of amphiphilic compounds into membranes and immobilization of the cytoplasm in a stable multicomponent glassy matrix.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2013
                23 September 2013
                : 14
                : 647
                Affiliations
                [1 ]Plant Metabolic Engineering Laboratory, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, HP, India
                [2 ]Studio of Computational Biology & Bioinformatics, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, HP, India
                [3 ]Plant Genomics Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, HP, India
                [4 ]Department of Genetics and Plant Breeding, Choudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur 176061, HP, India
                Article
                1471-2164-14-647
                10.1186/1471-2164-14-647
                3853109
                24059455
                56ed203d-0c1e-45e6-aed1-2a6fdb026548
                Copyright © 2013 Bhardwaj et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 May 2013
                : 13 September 2013
                Categories
                Research Article

                Genetics
                horse gram,illumina sequencing,de novo assembly,drought responsive genes
                Genetics
                horse gram, illumina sequencing, de novo assembly, drought responsive genes

                Comments

                Comment on this article