134
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Switched-memory B cells remodel B cell receptors within secondary germinal centers

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Effective vaccines induce high-affinity memory B cells and durable antibody responses through accelerated mechanisms of natural selection. Secondary changes in antibody repertoires after vaccine boosts suggest progressive B cell receptor (BCR) re-diversification, but underlying mechanisms remain unresolved. Here integrated specificity and function of individual memory B cell progeny reveal ongoing evolution of polyclonal antibody specificities through germinal center (GC) specific transcriptional activity. At the clonal and sub-clonal levels, single cell expression of Cd83 and Pol□ segregates the secondary GC transcriptional program into 4 stages that regulate divergent mechanisms of memory BCR evolution. These studies demonstrate that vaccine boosts re-activate a cyclic program of GC function in switched-memory B cells to remodel existing antibody specificities and enhance durable immune protection.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme.

          Induced overexpression of AID in CH12F3-2 B lymphoma cells augmented class switching from IgM to IgA without cytokine stimulation. AID deficiency caused a complete defect in class switching and showed a hyper-IgM phenotype with enlarged germinal centers containing strongly activated B cells before or after immunization. AID-/- spleen cells stimulated in vitro with LPS and cytokines failed to undergo class switch recombination although they expressed germline transcripts. Immunization of AID-/- chimera with 4-hydroxy-3-nitrophenylacetyl (NP) chicken gamma-globulin induced neither accumulation of mutations in the NP-specific variable region gene nor class switching. These results suggest that AID may be involved in regulation or catalysis of the DNA modification step of both class switching and somatic hypermutation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clonal selection and learning in the antibody system.

            K Rajewsky (1996)
            Each antibody-producing B cell makes antibodies of unique specificity, reflecting a series of ordered gene rearrangements which must be successfully performed if the cell is to survive. A second selection process occurs during immune responses in which a new antibody repertoire is generated through somatic hypermutation. Here only mutants binding antigen with high affinity survive to become memory cells. Cells expressing autoreactive receptors are counter-selected at both stages. This stringent positive and negative selection allows the generation and diversification of cells while rigorously controlling their specificity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells.

              Blimp-1 is a transcriptional repressor able to drive the terminal differentiation of B cells into Ig-secreting plasma cells. We have created mice with a B cell-specific deletion of prdm1, the gene encoding Blimp-1. B cell development and the number of B cells responding to antigen appear to be normal in these mice. However, in response to either TD or TI antigen, serum Ig, short-lived plasma cells, post-GC plasma cells, and plasma cells in a memory response are virtually absent, demonstrating that Blimp-1 is required for plasmacytic differentiation and Ig secretion. In the absence of Blimp-1, CD79b(+)B220(-) pre-plasma memory B cell development is also defective, providing evidence that this subset is an intermediate in plasma cell development. B cells lacking Blimp-1 cannot secrete Ig or induce muS mRNA when stimulated ex vivo. Furthermore, although prdm1-/- B cells fail to induce XBP-1, XBP-1 cannot rescue plasmacytic differentiation without Blimp-1.
                Bookmark

                Author and article information

                Journal
                100941354
                21750
                Nat Immunol
                Nat. Immunol.
                Nature immunology
                1529-2908
                1529-2916
                7 January 2015
                02 February 2015
                March 2015
                01 September 2015
                : 16
                : 3
                : 296-305
                Affiliations
                Department of Immunology and Microbial Science The Scripps Research Institute, La Jolla CA 92037
                Author notes
                [#]

                Current address Center d'Immunologie de Marseille-Luminy. Marseilles, France

                [§]

                Current address EMD Serono Research and Development Institute, Billerica MA 01821 USA

                []Corresponding author. mcheyzer@ 123456scripps.edu
                Article
                NIHMS652290
                10.1038/ni.3095
                4333102
                25642821
                59a3c622-0883-4046-ab4e-9c37a829eb77
                History
                Categories
                Article

                Immunology
                Immunology

                Comments

                Comment on this article