104
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Systematic Unraveling of the Unsolved Pathway of Nicotine Degradation in Pseudomonas

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microorganisms such as Pseudomonas putida play important roles in the mineralization of organic wastes and toxic compounds. To comprehensively and accurately elucidate key processes of nicotine degradation in Pseudomonas putida, we measured differential protein abundance levels with MS-based spectral counting in P. putida S16 grown on nicotine or glycerol, a non-repressive carbon source. In silico analyses highlighted significant clustering of proteins involved in a functional pathway in nicotine degradation. The transcriptional regulation of differentially expressed genes was analyzed by using quantitative reverse transcription-PCR. We observed the following key results: (i) The proteomes, containing 1,292 observed proteins, provide a detailed view of enzymes involved in nicotine metabolism. These proteins could be assigned to the functional groups of transport, detoxification, and amino acid metabolism. There were significant differences in the cytosolic protein patterns of cells growing in a nicotine medium and those in a glycerol medium. (ii) The key step in the conversion of 3-succinoylpyridine to 6-hydroxy-3-succinoylpyridine was catalyzed by a multi-enzyme reaction consisting of a molybdopeterin binding oxidase ( spmA), molybdopterin dehydrogenase ( spmB), and a (2Fe-2S)-binding ferredoxin ( spmC) with molybdenum molybdopterin cytosine dinucleotide as a cofactor. (iii) The gene of a novel nicotine oxidoreductase ( nicA2) was cloned, and the recombinant protein was characterized. The proteins and functional pathway identified in the current study represent attractive targets for degradation of environmental toxic compounds.

          Author Summary

          Pseudomonas putida strains are among the microorganisms that have acquired the capability to use toxic and xenobiotic compounds, such as nicotine, for growth. Although nicotine degradation by Pseudomonas was first discovered more than 50 years ago, the underlying molecular mechanisms remain unclear. In the last few years, we have made significant efforts to identify the key genes for the hydroxylation of 3-succinoylpyridine (SP) through genomic library screening and purification of wild-type enzymes. However, these efforts did not result in identifying any genes related to SP hydroxylation. In this study, by using comparative genetic analysis, we report the identification of 3 key genes, spmA, spmB and spmC from P. putida S16. The heterotrimeric enzyme encoded by these genes requires molybdopterin-cytosine dinucleotide as a cofactor. The proteomes of strain S16 grown on nicotine or glycerol contain 1,292 observed proteins, and provide a detailed view of enzymes involved in nicotine degradation. Our comparative analysis of the proteomic profiles of nicotine grown versus glycerol grown bacterial cells reveals a wide range of cellular processes and functions related to nicotine catabolism.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440.

          Analysis of the catabolic potential of Pseudomonas putida KT2440 against a wide range of natural aromatic compounds and sequence comparisons with the entire genome of this microorganism predicted the existence of at least four main pathways for the catabolism of central aromatic intermediates, that is, the protocatechuate (pca genes) and catechol (cat genes) branches of the beta-ketoadipate pathway, the homogentisate pathway (hmg/fah/mai genes) and the phenylacetate pathway (pha genes). Two additional gene clusters that might be involved in the catabolism of N-heterocyclic aromatic compounds (nic cluster) and in a central meta-cleavage pathway (pcm genes) were also identified. Furthermore, the genes encoding the peripheral pathways for the catabolism of p-hydroxybenzoate (pob), benzoate (ben), quinate (qui), phenylpropenoid compounds (fcs, ech, vdh, cal, van, acd and acs), phenylalanine and tyrosine (phh, hpd) and n-phenylalkanoic acids (fad) were mapped in the chromosome of P. putida KT2440. Although a repetitive extragenic palindromic (REP) element is usually associated with the gene clusters, a supraoperonic clustering of catabolic genes that channel different aromatic compounds into a common central pathway (catabolic island) was not observed in P. putida KT2440. The global view on the mineralization of aromatic compounds by P. putida KT2440 will facilitate the rational manipulation of this strain for improving biodegradation/biotransformation processes, and reveals this bacterium as a useful model system for studying biochemical, genetic, evolutionary and ecological aspects of the catabolism of aromatic compounds.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proteogenomic mapping as a complementary method to perform genome annotation.

            The accelerated rate of genomic sequencing has led to an abundance of completely sequenced genomes. Annotation of the open reading frames (ORFs) (i.e., gene prediction) in these genomes is an important task and is most often performed computationally based on features in the nucleic acid sequence. Using recent advances in proteomics, we set out to predict the set of ORFs for an organism based principally on expressed protein-based evidence. Using a novel search strategy, we mapped peptides detected in a whole-cell lysate of Mycoplasma pneumoniae onto a genomic scaffold and extended these "hits" into ORFs bound by traditional genetic signals to generate a "proteogenomic map". We were able to generate an ORF model for M. pneumoniae strain FH using proteomic data with a high correlation to models based on sequence features. Ultimately, we detected over 81% of the genomically predicted ORFs in M. pneumoniae strain M129 (the originally sequenced strain). We were also able to detect several new ORFs not originally predicted by genomic methods, various N-terminal extensions, and some evidence that would suggest that certain predicted ORFs are bogus. Some of these differences may be a result of the strain analyzed but demonstrate the robustness of protein analysis across closely related genomes. This technique is a cost-effective means to add value to genome annotation, and a prerequisite for proteome quantitation and in vivo interaction measures.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Pseudomonas putida: a cosmopolitan opportunist par excellence.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                October 2013
                October 2013
                24 October 2013
                : 9
                : 10
                : e1003923
                Affiliations
                [1]State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
                The University of North Carolina at Chapel Hill, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HT PX. Performed the experiments: HT LW WW HY KZ. Analyzed the data: HT LW WW HY KZ YY. Contributed reagents/materials/analysis tools: PX HT. Wrote the paper: HT PX.

                Article
                PGENETICS-D-13-02030
                10.1371/journal.pgen.1003923
                3812094
                24204321
                5a133ef3-dc27-4840-bfb7-8904dca83564
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 30 July 2013
                : 11 September 2013
                Page count
                Pages: 12
                Funding
                This work was supported in part by grants from the Chinese National Natural Science Foundation (31230002 and 31121064). We also acknowledge the “Shanghai Rising-Star Program” (13QA1401700) and the “Chen Xing” project from Shanghai Jiaotong University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article