37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Swimming-induced exercise promotes hypertrophy and vascularization of fast skeletal muscle fibres and activation of myogenic and angiogenic transcriptional programs in adult zebrafish

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The adult skeletal muscle is a plastic tissue with a remarkable ability to adapt to different levels of activity by altering its excitability, its contractile and metabolic phenotype and its mass. We previously reported on the potential of adult zebrafish as a tractable experimental model for exercise physiology, established its optimal swimming speed and showed that swimming-induced contractile activity potentiated somatic growth. Given that the underlying exercise-induced transcriptional mechanisms regulating muscle mass in vertebrates are not fully understood, here we investigated the cellular and molecular adaptive mechanisms taking place in fast skeletal muscle of adult zebrafish in response to swimming.

          Results

          Fish were trained at low swimming speed (0.1 m/s; non-exercised) or at their optimal swimming speed (0.4 m/s; exercised). A significant increase in fibre cross-sectional area (1.290 ± 88 vs. 1.665 ± 106 μm 2) and vascularization (298 ± 23 vs. 458 ± 38 capillaries/mm 2) was found in exercised over non-exercised fish. Gene expression profiling by microarray analysis evidenced the activation of a series of complex transcriptional networks of extracellular and intracellular signaling molecules and pathways involved in the regulation of muscle mass (e.g. IGF-1/PI3K/mTOR, BMP, MSTN), myogenesis and satellite cell activation (e.g. PAX3, FGF, Notch, Wnt, MEF2, Hh, EphrinB2) and angiogenesis (e.g. VEGF, HIF, Notch, EphrinB2, KLF2), some of which had not been previously associated with exercise-induced contractile activity.

          Conclusions

          The results from the present study show that exercise-induced contractile activity in adult zebrafish promotes a coordinated adaptive response in fast muscle that leads to increased muscle mass by hypertrophy and increased vascularization by angiogenesis. We propose that these phenotypic adaptations are the result of extensive transcriptional changes induced by exercise. Analysis of the transcriptional networks that are activated in response to exercise in the adult zebrafish fast muscle resulted in the identification of key signaling pathways and factors for the regulation of skeletal muscle mass, myogenesis and angiogenesis that have been remarkably conserved during evolution from fish to mammals. These results further support the validity of the adult zebrafish as an exercise model to decipher the complex molecular and cellular mechanisms governing skeletal muscle mass and function in vertebrates.

          Electronic supplementary material

          The online version of this article (doi:10.1186/1471-2164-15-1136) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Exercise and Type 2 Diabetes

          Although physical activity (PA) is a key element in the prevention and management of type 2 diabetes, many with this chronic disease do not become or remain regularly active. High-quality studies establishing the importance of exercise and fitness in diabetes were lacking until recently, but it is now well established that participation in regular PA improves blood glucose control and can prevent or delay type 2 diabetes, along with positively affecting lipids, blood pressure, cardiovascular events, mortality, and quality of life. Structured interventions combining PA and modest weight loss have been shown to lower type 2 diabetes risk by up to 58% in high-risk populations. Most benefits of PA on diabetes management are realized through acute and chronic improvements in insulin action, accomplished with both aerobic and resistance training. The benefits of physical training are discussed, along with recommendations for varying activities, PA-associated blood glucose management, diabetes prevention, gestational diabetes mellitus, and safe and effective practices for PA with diabetes-related complications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha.

            Ischaemia of the heart, brain and limbs is a leading cause of morbidity and mortality worldwide. Hypoxia stimulates the secretion of vascular endothelial growth factor (VEGF) and other angiogenic factors, leading to neovascularization and protection against ischaemic injury. Here we show that the transcriptional coactivator PGC-1alpha (peroxisome-proliferator-activated receptor-gamma coactivator-1alpha), a potent metabolic sensor and regulator, is induced by a lack of nutrients and oxygen, and PGC-1alpha powerfully regulates VEGF expression and angiogenesis in cultured muscle cells and skeletal muscle in vivo. PGC-1alpha-/- mice show a striking failure to reconstitute blood flow in a normal manner to the limb after an ischaemic insult, whereas transgenic expression of PGC-1alpha in skeletal muscle is protective. Surprisingly, the induction of VEGF by PGC-1alpha does not involve the canonical hypoxia response pathway and hypoxia inducible factor (HIF). Instead, PGC-1alpha coactivates the orphan nuclear receptor ERR-alpha (oestrogen-related receptor-alpha) on conserved binding sites found in the promoter and in a cluster within the first intron of the VEGF gene. Thus, PGC-1alpha and ERR-alpha, major regulators of mitochondrial function in response to exercise and other stimuli, also control a novel angiogenic pathway that delivers needed oxygen and substrates. PGC-1alpha may provide a novel therapeutic target for treating ischaemic diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signaling in muscle atrophy and hypertrophy.

              Muscle performance is influenced by turnover of contractile proteins. Production of new myofibrils and degradation of existing proteins is a delicate balance, which, depending on the condition, can promote muscle growth or loss. Protein synthesis and protein degradation are coordinately regulated by pathways that are influenced by mechanical stress, physical activity, availability of nutrients, and growth factors. Understanding the signaling that regulates muscle mass may provide potential therapeutic targets for the prevention and treatment of muscle wasting in metabolic and neuromuscular diseases.
                Bookmark

                Author and article information

                Contributors
                arjan.palstra@wur.nl
                m.rovira@ub.edu
                rizoroca@gmail.com
                jtorrella@ub.edu
                h.p.spaink@biology.leidenuniv.nl
                jplanas@ub.edu
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                18 December 2014
                18 December 2014
                2014
                : 15
                : 1
                : 1136
                Affiliations
                [ ]Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
                [ ]Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
                [ ]Institute for Marine Resources and Ecosystem Studies (IMARES), Wageningen Aquaculture, Wageningen UR, Yerseke, The Netherlands
                [ ]Department of Molecular Cell Biology, Institute Biology, Leiden University, Leiden, The Netherlands
                Article
                6880
                10.1186/1471-2164-15-1136
                4378002
                25518849
                5ad89b1c-24d3-4e65-a3a0-e54033b66e54
                © Palstra et al.; licensee BioMed Central. 2014

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 2 July 2014
                : 11 December 2014
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2014

                Genetics
                exercise,swimming,growth,muscle,transcriptome,zebrafish
                Genetics
                exercise, swimming, growth, muscle, transcriptome, zebrafish

                Comments

                Comment on this article