Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The conformation of the histone H3 tail inhibits association of the BPTF PHD finger with the nucleosome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Histone tails harbor a plethora of post-translational modifications that direct the function of chromatin regulators, which recognize them through effector domains. Effector domain/histone interactions have been broadly studied, but largely using peptide fragments of histone tails. Here, we extend these studies into the nucleosome context and find that the conformation adopted by the histone H3 tails is inhibitory to BPTF PHD finger binding. Using NMR spectroscopy and MD simulations, we show that the H3 tails interact robustly but dynamically with nucleosomal DNA, substantially reducing PHD finger association. Altering the electrostatics of the H3 tail via modification or mutation increases accessibility to the PHD finger, indicating that PTM crosstalk can regulate effector domain binding by altering nucleosome conformation. Together, our results demonstrate that the nucleosome context has a dramatic impact on signaling events at the histone tails, and highlights the importance of studying histone binding in the context of the nucleosome.

          eLife digest

          The human genome contains all the instructions needed to build the human body. However, each human cell does not read all of these instructions, which come in the form of genes encoded in the DNA. Instead, different subsets of genes are switched on in each type of cell, while the rest of the genes are switched off.

          DNA within human cells is wrapped around proteins called histones, to form hundreds of thousands of structures called nucleosomes. If the DNA that encodes a gene contains a lot of nucleosomes, the DNA is not very accessible and the gene will generally be off; removing the histones or rearranging the nucleosomes can turn the gene on.

          Each histone contains a region called a tail – because it protrudes like the tail of a cat – that can be chemically modified in dozens of different ways. Particular combinations of histone modifications are thought to signal how the nucleosomes should be arranged so that each gene is properly regulated. However, it is unclear how these combinations of modifications actually work because, historically, it has been difficult to study tails in the context of a nucleosome. Instead most studies had looked at tails that had been removed from the nucleosome.

          Now, Morrison et al. set out to investigate how one protein, called BPTF, recognizes a specific chemical modification on the tail of a histone, referred to as H3K4me3, in the context of a human nucleosome. Unexpectedly, the experiments showed that the histone-binding domain of BPTF, which binds to H3K4me3, was impeded when the tail was attached to the nucleosome but not when it was removed from the nucleosome. Morrison et al. went on to show that this was because the histone tail is tucked onto the rest of the nucleosome and not easily accessible. Further experiments revealed that additional chemical modifications made the tail more accessible, making it easier for the histone-binding domain to bind.

          Together these findings show that a combination of histone modifications acts to positively regulate the binding of a regulatory protein to H3K4me3 in the context of the nucleosome by actually regulating the nucleosome itself. The disruption of the histone signals is known to lead to a number of diseases, including cancer, autoimmune disease, and neurological disorders, and these findings could guide further research that may lead to new treatments. Yet first, much more work is needed to investigate how other histone modifications are recognized in the context of the nucleosome, and how the large number of possible combinations of histone signals affects this process.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          MMPBSA.py: An Efficient Program for End-State Free Energy Calculations.

          MM-PBSA is a post-processing end-state method to calculate free energies of molecules in solution. MMPBSA.py is a program written in Python for streamlining end-state free energy calculations using ensembles derived from molecular dynamics (MD) or Monte Carlo (MC) simulations. Several implicit solvation models are available with MMPBSA.py, including the Poisson-Boltzmann Model, the Generalized Born Model, and the Reference Interaction Site Model. Vibrational frequencies may be calculated using normal mode or quasi-harmonic analysis to approximate the solute entropy. Specific interactions can also be dissected using free energy decomposition or alanine scanning. A parallel implementation significantly speeds up the calculation by dividing frames evenly across available processors. MMPBSA.py is an efficient, user-friendly program with the flexibility to accommodate the needs of users performing end-state free energy calculations. The source code can be downloaded at http://ambermd.org/ with AmberTools, released under the GNU General Public License.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning.

            Previous studies have shown that the method of hydrogen mass repartitioning (HMR) is a potentially useful tool for accelerating molecular dynamics (MD) simulations. By repartitioning the mass of heavy atoms into the bonded hydrogen atoms, it is possible to slow the highest-frequency motions of the macromolecule under study, thus allowing the time step of the simulation to be increased by up to a factor of 2. In this communication, we investigate further how this mass repartitioning allows the simulation time step to be increased in a stable fashion without significantly increasing discretization error. To this end, we ran a set of simulations with different time steps and mass distributions on a three-residue peptide to get a comprehensive view of the effect of mass repartitioning and time step increase on a system whose accessible phase space is fully explored in a relatively short amount of time. We next studied a 129-residue protein, hen egg white lysozyme (HEWL), to verify that the observed behavior extends to a larger, more-realistic, system. Results for the protein include structural comparisons from MD trajectories, as well as comparisons of pKa calculations via constant-pH MD. We also calculated a potential of mean force (PMF) of a dihedral rotation for the MTS [(1-oxyl-2,2,5,5-tetramethyl-pyrroline-3-methyl)methanethiosulfonate] spin label via umbrella sampling with a set of regular MD trajectories, as well as a set of mass-repartitioned trajectories with a time step of 4 fs. Since no significant difference in kinetics or thermodynamics is observed by the use of fast HMR trajectories, further evidence is provided that long-time-step HMR MD simulations are a viable tool for accelerating MD simulations for molecules of biochemical interest.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of nucleosome dynamics by histone modifications.

              Chromatin is a dynamic structure that must respond to myriad stimuli to regulate access to DNA, and chemical modification of histones is a major means by which the cell modulates nucleosome mobility and turnover. Histone modifications are linked to essentially every cellular process requiring DNA access, including transcription, replication and repair. Here we consider properties of the major types of histone modification in the context of their associated biological processes to view them in light of the cellular mechanisms that regulate nucleosome dynamics.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing Editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                12 April 2018
                2018
                : 7
                : e31481
                Affiliations
                [1 ]deptDepartment of Biochemistry Carver College of Medicine, University of Iowa Iowa CityUnited States
                [2 ]deptDepartment of Physics Illinois Institute of Technology ChicagoIllinois
                [3 ]deptCenter for Molecular Study of Condensed Soft Matter Illinois Institute of Technology ChicagoIllinois
                [4]University of California, San Francisco United States
                [5]University of California, San Francisco United States
                Author information
                http://orcid.org/0000-0001-6722-7961
                http://orcid.org/0000-0003-0753-4294
                http://orcid.org/0000-0003-0711-402X
                http://orcid.org/0000-0002-8356-7971
                Article
                31481
                10.7554/eLife.31481
                5953545
                29648537
                5ec892e7-6ccf-49f4-ac33-291c267819eb
                © 2018, Morrison et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 23 August 2017
                : 11 April 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000001, National Science Foundation;
                Award ID: 1452411
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000001, National Science Foundation;
                Award ID: 1552743
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000997, Arnold and Mabel Beckman Foundation;
                Award ID: Postdoctoral Fellowship
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: R35GM119647
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Chromosomes and Gene Expression
                Structural Biology and Molecular Biophysics
                Custom metadata
                The BPTF PHD finger is inhibited from binding the methylated H3 tails in the context of the nucleosome due to their robust interaction with the nucleosomal DNA, which can be modulated by additional histone PTMs.

                Life sciences
                nucleosome,histone tail,phd finger,methylation,nmr spectroscopy,md simulation,human
                Life sciences
                nucleosome, histone tail, phd finger, methylation, nmr spectroscopy, md simulation, human

                Comments

                Comment on this article