30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cuproptosis scoring system to predict the clinical outcome and immune response in bladder cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cuproptosis is a novel copper ion-dependent cell death type being regulated in cells, and this is quite different from the common cell death patterns such as apoptosis, pyroptosis, necroptosis, and ferroptosis. Interestingly, like with death patterns, cuproptosis-related genes have recently been reported to regulate the occurrence and progression of various tumors. However, in bladder cancer, the link between cuproptosis and clinical outcome, tumor microenvironment (TME) modification, and immunotherapy is unknown. To determine the role of cuprotosis in the tumor microenvironment, we systematically examined the characteristic patterns of 10 cuproptosis-related genes in bladder cancer (BLCA). By analyzing principal component data, we established a cuproptosis score to determine the degree of cuproptosis among patients. Finally, we evaluated the potential of these values in predicting BLCA prognosis and treatment responses. A comprehensive study of the mutations of cuproptosis-related genes in BLCA specimens was conducted at the genetic level, and their expression and survival patterns were evaluated using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Two cuproptosis patterns were constructed based on the transcription level of 10 cuproptosis-related genes, featuring differences in the prognosis and the infiltrating landscape of immune cells (especially T and dendritic cells) with interactions between cuproptosis and the TME. Our study further demonstrated that cuproptosis score may predict prognosis, immunophenotype sensitivity to chemotherapy, and immunotherapy response among bladder cancer patients. The development and progression of bladder cancer are likely to be influenced by cuproptosis, which may involve a diverse and complex TME. The cuproptosis pattern evaluated in our study may enhance understanding of immune infiltrations and guide more potent immunotherapy interventions.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          GSVA: gene set variation analysis for microarray and RNA-Seq data

          Background Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets. Results To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments. Conclusions GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Robust enumeration of cell subsets from tissue expression profiles

            We introduce CIBERSORT, a method for characterizing cell composition of complex tissues from their gene expression profiles. When applied to enumeration of hematopoietic subsets in RNA mixtures from fresh, frozen, and fixed tissues, including solid tumors, CIBERSORT outperformed other methods with respect to noise, unknown mixture content, and closely related cell types. CIBERSORT should enable large-scale analysis of RNA mixtures for cellular biomarkers and therapeutic targets (http://cibersort.stanford.edu).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking

              Summary: Unsupervised class discovery is a highly useful technique in cancer research, where intrinsic groups sharing biological characteristics may exist but are unknown. The consensus clustering (CC) method provides quantitative and visual stability evidence for estimating the number of unsupervised classes in a dataset. ConsensusClusterPlus implements the CC method in R and extends it with new functionality and visualizations including item tracking, item-consensus and cluster-consensus plots. These new features provide users with detailed information that enable more specific decisions in unsupervised class discovery. Availability: ConsensusClusterPlus is open source software, written in R, under GPL-2, and available through the Bioconductor project (http://www.bioconductor.org/). Contact: mwilkers@med.unc.edu Supplementary Information: Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                04 August 2022
                2022
                : 13
                : 958368
                Affiliations
                [1] 1 Department of Urology, Guangzhou Women and Children’s Medical Center, National Children’s Medical Center for South Central Region, Guangzhou Medical University , Guangzhou, China
                [2] 2 Department of Urology, The First Affiliated Hospital of Nanjing Medical University , Nanjing, China
                Author notes

                Edited by: Kui Zhang, The University of Chicago, United States

                Reviewed by: Xin Yin, Penn State Milton S. Hershey Medical Center, United States; Honghu Quan, Wuxi AppTec, China

                *Correspondence: Wen Fu, doctorfuwen@ 123456163.com ; Fangpeng Shu, 15625060053@ 123456163.com

                †These authors have contributed equally to this work

                This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2022.958368
                9386055
                35990642
                60debbb6-f012-495d-98c6-2b4d664894b1
                Copyright © 2022 Song, Zhou, Shu and Fu

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 May 2022
                : 08 July 2022
                Page count
                Figures: 8, Tables: 1, Equations: 0, References: 31, Pages: 16, Words: 6050
                Funding
                Funded by: Guangzhou Municipal Science and Technology Project , doi 10.13039/501100010256;
                Award ID: 202102010170, 202102010236
                Funded by: Basic and Applied Basic Research Foundation of Guangdong Province , doi 10.13039/501100021171;
                Categories
                Immunology
                Original Research

                Immunology
                bladder cancer,cuproptosis,prognosis,tumor microenvironment,immunotherapy
                Immunology
                bladder cancer, cuproptosis, prognosis, tumor microenvironment, immunotherapy

                Comments

                Comment on this article