41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TGF-β1-SOX9 axis-inducible COL10A1 promotes invasion and metastasis in gastric cancer via epithelial-to-mesenchymal transition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Molecular biomarkers that predict disease progression might promote drug development and therapeutic strategies in aggressive cancers, such as gastric cancer (GC). High-throughput mRNA sequencing (RNA-seq) revealed that collagen type X alpha 1 (COL10A1) is a disease progression-associated gene. Analysis of 103 GC patients showed that high COL10A1 mRNA expression was associated with GC metastasis and reduced survival. We analyzed the COL10A1 promoter using the UCSC genome website and JASPAR database, and we found potential SOX9 binding site. Here, we demonstrated that SOX9 and COL10A1 were both up-regulated in GC. We observed a positive correlation between the expression patterns of SOX9 and COL10A1 in GC cells and tissues. The results of electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP) assay and promoter reporter indicated that SOX9 could directly bind to the COL10A1 gene promoter and activate its transcription. Biological function experiments showed that COL10A1 regulated the migration and invasion of GC cells. Knockdown COL10A1 inhibited lung and abdominal cavity metastasis in a nude mouse model. Moreover, transforming growth factor-β1 (TGF-β1) treatment up-regulated the phosphorylation of Smad2 and increased SOX9 and COL10A1 expression. COL10A1 was confirmed to be a potential inducer of epithelial-to-mesenchymal transition (EMT). SOX9 was essential for COL10A1-mediated EMT, and cell migration, invasion and metastasis. Co-expression of SOX9 and COL10A1 was associated with tumor progression and was strongly predictive of overall survival in GC patients. In summary, this study elucidated the mechanistic link between COL10A1 and the TGF-β1-SOX9 axis. These findings indicated that COL10A1 might play a crucial role in GC progression and serve as a potential biomarker and therapeutic target in GC patients.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and disease.

          The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tensional homeostasis and the malignant phenotype.

            Tumors are stiffer than normal tissue, and tumors have altered integrins. Because integrins are mechanotransducers that regulate cell fate, we asked whether tissue stiffness could promote malignant behavior by modulating integrins. We found that tumors are rigid because they have a stiff stroma and elevated Rho-dependent cytoskeletal tension that drives focal adhesions, disrupts adherens junctions, perturbs tissue polarity, enhances growth, and hinders lumen formation. Matrix stiffness perturbs epithelial morphogenesis by clustering integrins to enhance ERK activation and increase ROCK-generated contractility and focal adhesions. Contractile, EGF-transformed epithelia with elevated ERK and Rho activity could be phenotypically reverted to tissues lacking focal adhesions if Rho-generated contractility or ERK activity was decreased. Thus, ERK and Rho constitute part of an integrated mechanoregulatory circuit linking matrix stiffness to cytoskeletal tension through integrins to regulate tissue phenotype.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting.

              Matrix metalloproteinases (MMPs) consist of a multigene family of zinc-dependent extracellular matrix (ECM) remodeling endopeptidases implicated in pathological processes, such as carcinogenesis. In this regard, their activity plays a pivotal role in tumor growth and the multistep processes of invasion and metastasis, including proteolytic degradation of ECM, alteration of the cell-cell and cell-ECM interactions, migration and angiogenesis. The underlying premise of the current minireview is that MMPs are able to proteolytically process substrates in the extracellular milieu and, in so doing, promote tumor progression. However, certain members of the MMP family exert contradicting roles at different stages during cancer progression, depending among other factors on the tumor stage, tumor site, enzyme localization and substrate profile. MMPs are therefore amenable to therapeutic intervention by synthetic and natural inhibitors, providing perspectives for future studies. Multiple therapeutic agents, called matrix metalloproteinase inhibitors (MMPIs) have been developed to target MMPs, attempting to control their enzymatic activity. Even though clinical trials with these compounds do not show the expected results in most cases, the field of MMPIs is ongoing. This minireview critically evaluates the role of MMPs in relation to cancer progression, and highlights the challenges, as well as future prospects, for the design, development and efficacy of MMPIs. © 2010 The Authors Journal compilation © 2010 FEBS.
                Bookmark

                Author and article information

                Contributors
                +86 20 61641681 , liuhofbi@163.com
                balbc@163.com
                gzliguoxin@163.com
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                28 August 2018
                28 August 2018
                September 2018
                : 9
                : 9
                : 849
                Affiliations
                [1 ]GRID grid.416466.7, Department of General Surgery, , Nanfang Hospital, Southern Medical University, ; Guangzhou, China
                [2 ]GRID grid.413402.0, Department of Gastrointestinal Surgery, , Guangdong Provincial Hospital of Traditional Chinese Medicine, ; Guangzhou, China
                [3 ]ISNI 0000 0004 1762 1794, GRID grid.412558.f, Division of Cardiology, , Third Affiliated Hospital, Sun Yat-sen University, ; Guangzhou, China
                [4 ]Departments of Maxillofacial and Otorhinolaryngology Oncology; Department of Head and Neck Surgery, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin’s Clinical Research Center for Cancer, Tianjin, China
                [5 ]Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
                Author information
                http://orcid.org/0000-0001-9209-0602
                Article
                877
                10.1038/s41419-018-0877-2
                6113209
                30154451
                614a1db5-5d56-4379-b6f2-3951916b0335
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 27 February 2018
                : 22 May 2018
                : 13 June 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 81672446
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100007162, Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province);
                Award ID: 2014A020215014
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Cell biology
                Cell biology

                Comments

                Comment on this article