20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Xenbase: Facilitating the Use of Xenopus to Model Human Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          At a fundamental level most genes, signaling pathways, biological functions and organ systems are highly conserved between man and all vertebrate species. Leveraging this conservation, researchers are increasingly using the experimental advantages of the amphibian Xenopus to model human disease. The online Xenopus resource, Xenbase, enables human disease modeling by curating the Xenopus literature published in PubMed and integrating these Xenopus data with orthologous human genes, anatomy, and more recently with links to the Online Mendelian Inheritance in Man resource (OMIM) and the Human Disease Ontology (DO). Here we review how Xenbase supports disease modeling and report on a meta-analysis of the published Xenopus research providing an overview of the different types of diseases being modeled in Xenopus and the variety of experimental approaches being used. Text mining of over 50,000 Xenopus research articles imported into Xenbase from PubMed identified approximately 1,000 putative disease- modeling articles. These articles were manually assessed and annotated with disease ontologies, which were then used to classify papers based on disease type. We found that Xenopus is being used to study a diverse array of disease with three main experimental approaches: cell-free egg extracts to study fundamental aspects of cellular and molecular biology, oocytes to study ion transport and channel physiology and embryo experiments focused on congenital diseases. We integrated these data into Xenbase Disease Pages to allow easy navigation to disease information on external databases. Results of this analysis will equip Xenopus researchers with a suite of experimental approaches available to model or dissect a pathological process. Ideally clinicians and basic researchers will use this information to foster collaborations necessary to interrogate the development and treatment of human diseases.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genome of the Western clawed frog Xenopus tropicalis.

            The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes more than 20,000 protein-coding genes, including orthologs of at least 1700 human disease genes. Over 1 million expressed sequence tags validated the annotation. More than one-third of the genome consists of transposable elements, with unusually prevalent DNA transposons. Like that of other tetrapods, the genome of X. tropicalis contains gene deserts enriched for conserved noncoding elements. The genome exhibits substantial shared synteny with human and chicken over major parts of large chromosomes, broken by lineage-specific chromosome fusions and fissions, mainly in the mammalian lineage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              clusterMaker: a multi-algorithm clustering plugin for Cytoscape

              Background In the post-genomic era, the rapid increase in high-throughput data calls for computational tools capable of integrating data of diverse types and facilitating recognition of biologically meaningful patterns within them. For example, protein-protein interaction data sets have been clustered to identify stable complexes, but scientists lack easily accessible tools to facilitate combined analyses of multiple data sets from different types of experiments. Here we present clusterMaker, a Cytoscape plugin that implements several clustering algorithms and provides network, dendrogram, and heat map views of the results. The Cytoscape network is linked to all of the other views, so that a selection in one is immediately reflected in the others. clusterMaker is the first Cytoscape plugin to implement such a wide variety of clustering algorithms and visualizations, including the only implementations of hierarchical clustering, dendrogram plus heat map visualization (tree view), k-means, k-medoid, SCPS, AutoSOME, and native (Java) MCL. Results Results are presented in the form of three scenarios of use: analysis of protein expression data using a recently published mouse interactome and a mouse microarray data set of nearly one hundred diverse cell/tissue types; the identification of protein complexes in the yeast Saccharomyces cerevisiae; and the cluster analysis of the vicinal oxygen chelate (VOC) enzyme superfamily. For scenario one, we explore functionally enriched mouse interactomes specific to particular cellular phenotypes and apply fuzzy clustering. For scenario two, we explore the prefoldin complex in detail using both physical and genetic interaction clusters. For scenario three, we explore the possible annotation of a protein as a methylmalonyl-CoA epimerase within the VOC superfamily. Cytoscape session files for all three scenarios are provided in the Additional Files section. Conclusions The Cytoscape plugin clusterMaker provides a number of clustering algorithms and visualizations that can be used independently or in combination for analysis and visualization of biological data sets, and for confirming or generating hypotheses about biological function. Several of these visualizations and algorithms are only available to Cytoscape users through the clusterMaker plugin. clusterMaker is available via the Cytoscape plugin manager.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                26 February 2019
                2019
                : 10
                : 154
                Affiliations
                [1] 1Division of Developmental Biology, Cincinnati Children’s Hospital , Cincinnati, OH, United States
                [2] 2Department of Biological Sciences, University of Calgary , Calgary, AB, Canada
                [3] 3Institute of Ecology and Evolution, University of Oregon , Eugene, OR, United States
                Author notes

                Edited by: John Noel Griffin, Duke University, United States

                Reviewed by: Emily K. Mis, Yale University, United States; Radek Sindelka, Institute of Biotechnology (ASCR), Czechia; Jose G. Abreu, Universidade Federal do Rio de Janeiro, Brazil; Anne H. Monsoro-Burq, Université Paris-Sud, France

                *Correspondence: Mardi J. Nenni, mardi.nenni@ 123456cchmc.org Malcolm E. Fisher, malcolm.fisher@ 123456cchmc.org Aaron M. Zorn, aaron.zorn@ 123456cchmc.org

                This article was submitted to Embryonic and Developmental Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2019.00154
                6399412
                30863320
                61f02bc0-9783-44f1-bd9c-6526e1ff1566
                Copyright © 2019 Nenni, Fisher, James-Zorn, Pells, Ponferrada, Chu, Fortriede, Burns, Wang, Lotay, Wang, Segerdell, Chaturvedi, Karimi, Vize and Zorn.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 November 2018
                : 08 February 2019
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 89, Pages: 13, Words: 0
                Funding
                Funded by: Eunice Kennedy Shriver National Institute of Child Health and Human Development 10.13039/100009633
                Award ID: P41HD064556
                Categories
                Physiology
                Review

                Anatomy & Physiology
                xenopus,xenbase,model organism database,human disease,ontologies,oocyte,cell-free egg extract

                Comments

                Comment on this article