13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetes cardiomyopathy (DCM) is a critical complication of long-term chronic diabetes mellitus and is characterized by myocardial fibrosis and myocardial hypertrophy. It has been suggested that DCM is related to pyroptosis, a programmed cell death associated with inflammation. The long non-coding RNA Kcnq1ot1 is involved in different pathophysiological mechanisms of multiple diseases, including acute myocardial damage and arrhythmia. Our previous study found that Kcnq1ot1 was elevated in left ventricular tissue of diabetic mice. However, whether Kcnq1ot1 is capable of regulating pyroptosis and fibrosis in high glucose-treated cardiac fibroblasts remains unknown. The aim of the study was to investigate the mechanisms of Kcnq1ot1 in DCM. Our study revealed that silencing Kcnq1ot1 by a lentivirus-shRNA improved cardiac function and fibrosis, ameliorated pyroptosis, and inhibited TGF-β1/smads pathway in C57BL/6 mice. In vitro, experiments revealed that Kcnq1ot1 and pyroptosis were activated in cardiac fibroblasts treated with 30 mmol/l glucose. Furthermore, Kcnq1ot1 knockdown by a small interfering RNA decreased caspase-1 expression. Bioinformatic prediction and luciferase assays showed that Kcnq1ot1 functioned as a competing endogenous RNA to regulate the expression of caspase-1 by sponging miR-214-3p. In addition, silencing Kcnq1ot1 promoted gasdermin D cleavage and the secretion of IL-1β, thus repressing the TGF-β1/smads pathway in high glucose-treated cardiac fibroblasts through miR-214-3p and caspase-1. Therefore, Kcnq1ot1/miR-214-3p/caspase-1/TGF-β1 signal pathway presents a new mechanism of DCM progression and could potentially be a novel therapeutic target.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death

          Abstract Pyroptosis is a lytic type of cell death that is initiated by inflammatory caspases. These caspases are activated within multi‐protein inflammasome complexes that assemble in response to pathogens and endogenous danger signals. Pyroptotic cell death has been proposed to proceed via the formation of a plasma membrane pore, but the underlying molecular mechanism has remained unclear. Recently, gasdermin D (GSDMD), a member of the ill‐characterized gasdermin protein family, was identified as a caspase substrate and an essential mediator of pyroptosis. GSDMD is thus a candidate for pyroptotic pore formation. Here, we characterize GSDMD function in live cells and in vitro. We show that the N‐terminal fragment of caspase‐1‐cleaved GSDMD rapidly targets the membrane fraction of macrophages and that it induces the formation of a plasma membrane pore. In vitro, the N‐terminal fragment of caspase‐1‐cleaved recombinant GSDMD tightly binds liposomes and forms large permeability pores. Visualization of liposome‐inserted GSDMD at nanometer resolution by cryo‐electron and atomic force microscopy shows circular pores with variable ring diameters around 20 nm. Overall, these data demonstrate that GSDMD is the direct and final executor of pyroptotic cell death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The NLRP3 inflammasome: a sensor for metabolic danger?

            Interleukin-1beta (IL-1beta), reactive oxygen species (ROS), and thioredoxin-interacting protein (TXNIP) are all implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). Here we review mechanisms directing IL-1beta production and its pathogenic role in islet dysfunction during chronic hyperglycemia. In doing so, we integrate previously disparate disease-driving mechanisms for IL-1beta, ROS, and TXNIP in T2DM into one unifying model in which the NLRP3 inflammasome plays a central role. The NLRP3 inflammasome also drives IL-1beta maturation and secretion in another disease of metabolic dysregulation, gout. Thus, we propose that the NLRP3 inflammasome contributes to the pathogenesis of T2DM and gout by functioning as a sensor for metabolic stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diabetic cardiomyopathy, causes and effects.

              Diabetes is associated with increased incidence of heart failure even after controlling for coronary artery disease and hypertension. Thus, as diabetic cardiomyopathy has become an increasingly recognized entity among clinicians, a better understanding of its pathophysiology is necessary for early diagnosis and the development of treatment strategies for diabetes-associated cardiovascular dysfunction. We will review recent basic and clinical research into the manifestations and the pathophysiological mechanisms of diabetic cardiomyopathy. The discussion will be focused on the structural, functional and metabolic changes that occur in the myocardium in diabetes and how these changes may contribute to the development of diabetic cardiomyopathy in affected humans and relevant animal models.
                Bookmark

                Author and article information

                Contributors
                baiyunlong@ems.hrbmu.edu.cn
                nd6688@163.com
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                24 September 2018
                24 September 2018
                October 2018
                : 9
                : 10
                : 1000
                Affiliations
                [1 ]ISNI 0000 0004 1762 6325, GRID grid.412463.6, Department of Endocrinology, , The Second Affiliated Hospital of Harbin Medical University, ; Harbin, China
                [2 ]Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
                [3 ]ISNI 0000 0001 2204 9268, GRID grid.410736.7, Department of Pharmacology (State-Province Key Laboratories of iomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), , College of Pharmacy, Harbin Medical University, ; Harbin, China
                Article
                1029
                10.1038/s41419-018-1029-4
                6155223
                30250027
                63aeaab2-bfd6-4db3-9edc-f5d739824e51
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 2 July 2018
                : 13 August 2018
                : 4 September 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 81770809
                Award ID: 81673426
                Award Recipient :
                Funded by: Bethune-Merck Diabetes Research Foundation (G2017044)
                Funded by: Graduate Innovation Fund of Harbin Medical University (YJSCX2017-59HYD)
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Cell biology
                Cell biology

                Comments

                Comment on this article