31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Upon the accumulation of unfolded proteins in the mammalian endoplasmic reticulum (ER), X-box binding protein 1 (XBP1) premessenger RNA (premRNA) is converted to mature mRNA by unconventional splicing that is mediated by the endonuclease inositol-requiring enzyme 1. The transcription factor protein (p) XBP1 spliced (S), which is translated from mature XBP1 mRNA, contains the nuclear localization signal and the transcriptional activation domain and activates the transcription of target genes, including those encoding ER chaperones in the nucleus. We show that pXBP1 unspliced (U) encoded in XBP1 pre-mRNA was constitutively expressed and markedly accumulated at the recovery phase of ER stress. pXBP1(U) contained the nuclear exclusion signal instead of the transcriptional activation domain and shuttled between the nucleus and the cytoplasm. Interestingly, pXBP1(U) formed a complex with pXBP1(S), and the pXBP1(U)–pXBP1(S) complex was sequestered from the nucleus. Moreover, the complex was rapidly degraded by proteasomes because of the degradation motif contained in pXBP1(U). Thus, pXBP1(U) is a negative feedback regulator of pXBP1(S), which shuts off the transcription of target genes during the recovery phase of ER stress.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs.

          ATF6 is a membrane-bound transcription factor that activates genes in the endoplasmic reticulum (ER) stress response. When unfolded proteins accumulate in the ER, ATF6 is cleaved to release its cytoplasmic domain, which enters the nucleus. Here, we show that ATF6 is processed by Site-1 protease (S1P) and Site-2 protease (S2P), the enzymes that process SREBPs in response to cholesterol deprivation. ATF6 processing was blocked completely in cells lacking S2P and partially in cells lacking S1P. ATF6 processing required the RxxL and asparagine/proline motifs, known requirements for S1P and S2P processing, respectively. Cells lacking S2P failed to induce GRP78, an ATF6 target, in response to ER stress. ATF6 processing did not require SCAP, which is essential for SREBP processing. We conclude that S1P and S2P are required for the ER stress response as well as for lipid synthesis.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase.

              The transcription of genes encoding soluble proteins that reside in the endoplasmic reticulum (ER) is induced when unfolded proteins accumulate in the ER. Thus, an intracellular signal transduction pathway must exist that mediates communication between the ER lumen and the nucleus. We have identified a gene in S. cerevisiae, IRE1, that is required for this pathway: ire1- mutants cannot activate transcription of KAR2 and PDI1, which encode the ER resident proteins BiP and protein disulfide isomerase. Moreover, IRE1 is essential for cell viability under stress conditions that cause unfolded proteins to accumulate in the ER. IRE1 encodes a transmembrane serine/threonine kinase that we propose transmits the unfolded protein signal across the ER or inner nuclear membrane. IRE1 is also required for inositol prototrophy, suggesting that the induction of ER resident proteins is coupled to the biogenesis of new ER membrane.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                JCB
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                13 February 2006
                : 172
                : 4
                : 565-575
                Affiliations
                [1 ]Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
                [2 ]Precursory Research for Embryonic Science and Technology-Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Saitama 332-0012 Japan
                Author notes

                Correspondence to Hiderou Yoshida: hide@ 123456biophysics.mbox.media.kyoto-u.ac.jp

                Article
                200508145
                10.1083/jcb.200508145
                2063676
                16461360
                671f85c9-7a9a-4b00-9a20-80b3fb6f4223
                Copyright © 2006, The Rockefeller University Press
                History
                : 22 August 2005
                : 3 January 2006
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article