24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found
      Is Open Access

      Integration of Lupinus angustifolius L. (narrow-leafed lupin) genome maps and comparative mapping within legumes

      Chromosome Research
      Springer
      lupinus angustifolius, chromosome markers, integrated map, rdna, centromeres, synteny

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Narrow-leafed lupin (Lupinus angustifolius L.) has recently been considered a reference genome for the Lupinus genus. In the present work, genetic and cytogenetic maps of L. angustifolius were supplemented with 30 new molecular markers representing lupin genome regions, harboring genes involved in nitrogen fixation during the symbiotic interaction of legumes and soil bacteria (Rhizobiaceae). Our studies resulted in the precise localization of bacterial artificial chromosomes (BACs) carrying sequence variants for early nodulin 40, nodulin 26, nodulin 45, aspartate aminotransferase P2, asparagine synthetase, cytosolic glutamine synthetase, and phosphoenolpyruvate carboxylase. Together with previously mapped chromosomes, the integrated L. angustifolius map encompasses 73 chromosome markers, including 5S ribosomal DNA (rDNA) and 45S rDNA, and anchors 20 L. angustifolius linkage groups to corresponding chromosomes. Chromosomal identification using BAC fluorescence in situ hybridization identified two BAC clones as narrow-leafed lupin centromere-specific markers, which served as templates for preliminary studies of centromere composition within the genus. Bioinformatic analysis of these two BACs revealed that centromeric/pericentromeric regions of narrow-leafed lupin chromosomes consisted of simple sequence repeats ordered into tandem repeats containing the trinucleotide and pentanucleotide simple sequence repeats AGG and GATAC, structured into long arrays. Moreover, cross-genus microsynteny analysis revealed syntenic patterns of 31 single-locus BAC clones among several legume species. The gene and chromosome level findings provide evidence of ancient duplication events that must have occurred very early in the divergence of papilionoid lineages. This work provides a strong foundation for future comparative mapping among legumes and may facilitate understanding of mechanisms involved in shaping legume chromosomes. Electronic supplementary material The online version of this article (doi:10.1007/s10577-016-9526-8) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Primer3Plus, an enhanced web interface to Primer3

          Here we present Primer3Plus, a new web interface to the popular Primer3 primer design program as an enhanced alternative for the CGI- scripts that come with Primer3. Primer3 consists of a command line program and a web interface. The web interface is one large form showing all of the possible options. This makes the interface powerful, but at the same time confusing for occasional users. Primer3Plus provides an intuitive user interface using present-day web technologies and has been developed in close collaboration with molecular biologists and technicians regularly designing primers. It focuses on the task at hand, and hides detailed settings from the user until these are needed. We also added functionality to automate specific tasks like designing primers for cloning or step-wise sequencing. Settings and designed primer sequences can be stored locally for later use. Primer3Plus supports a range of common sequence formats, such as FASTA. Finally, primers selected by Primer3Plus can be sent to an order form, allowing tight integration into laboratory ordering systems. Moreover, the open architecture of Primer3Plus allows easy expansion or integration of external software packages. The Primer3Plus Perl source code is available under GPL license from SourceForge. Primer3Plus is available at http://www.bioinformatics.nl/primer3plus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ab initio gene finding in Drosophila genomic DNA.

            Ab initio gene identification in the genomic sequence of Drosophila melanogaster was obtained using (human gene predictor) and Fgenesh programs that have organism-specific parameters for human, Drosophila, plants, yeast, and nematode. We did not use information about cDNA/EST in most predictions to model a real situation for finding new genes because information about complete cDNA is often absent or based on very small partial fragments. We investigated the accuracy of gene prediction on different levels and designed several schemes to predict an unambiguous set of genes (annotation CGG1), a set of reliable exons (annotation CGG2), and the most complete set of exons (annotation CGG3). For 49 genes, protein products of which have clear homologs in protein databases, predictions were recomputed by Fgenesh+ program. The first annotation serves as the optimal computational description of new sequence to be presented in a database. Reliable exons from the second annotation serve as good candidates for selecting the PCR primers for experimental work for gene structure verification. Our results shows that we can identify approximately 90% of coding nucleotides with 20% false positives. At the exon level we accurately predicted 65% of exons and 89% including overlapping exons with 49% false positives. Optimizing accuracy of prediction, we designed a gene identification scheme using Fgenesh, which provided sensitivity (Sn) = 98% and specificity (Sp) = 86% at the base level, Sn = 81% (97% including overlapping exons) and Sp = 58% at the exon level and Sn = 72% and Sp = 39% at the gene level (estimating sensitivity on std1 set and specificity on std3 set). In general, these results showed that computational gene prediction can be a reliable tool for annotating new genomic sequences, giving accurate information on 90% of coding sequences with 14% false positives. However, exact gene prediction (especially at the gene level) needs additional improvement using gene prediction algorithms. The program was also tested for predicting genes of human Chromosome 22 (the last variant of Fgenesh can analyze the whole chromosome sequence). This analysis has demonstrated that the 88% of manually annotated exons in Chromosome 22 were among the ab initio predicted exons. The suite of gene identification programs is available through the WWW server of Computational Genomics Group at http://genomic.sanger.ac.uk/gf. html.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Genome Structure of the Legume, Lotus japonicus

              The legume Lotus japonicus has been widely used as a model system to investigate the genetic background of legume-specific phenomena such as symbiotic nitrogen fixation. Here, we report structural features of the L. japonicus genome. The 315.1-Mb sequences determined in this and previous studies correspond to 67% of the genome (472 Mb), and are likely to cover 91.3% of the gene space. Linkage mapping anchored 130-Mb sequences onto the six linkage groups. A total of 10 951 complete and 19 848 partial structures of protein-encoding genes were assigned to the genome. Comparative analysis of these genes revealed the expansion of several functional domains and gene families that are characteristic of L. japonicus. Synteny analysis detected traces of whole-genome duplication and the presence of synteny blocks with other plant genomes to various degrees. This study provides the first opportunity to look into the complex and unique genetic system of legumes.
                Bookmark

                Author and article information

                Journal
                27168155
                4969343
                10.1007/s10577-016-9526-8
                This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                Genetics
                lupinus angustifolius,chromosome markers,integrated map,rdna,centromeres,synteny
                Genetics
                lupinus angustifolius, chromosome markers, integrated map, rdna, centromeres, synteny

                Comments

                Comment on this article