24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      WDR79 promotes the proliferation of non-small cell lung cancer cells via USP7-mediated regulation of the Mdm2-p53 pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          WD repeat protein 79 (WDR79) is a member of the WD-repeat protein family and functions as a scaffold protein during telomerase assembly, Cajal body formation and DNA double strand break repair. We have previously shown that WDR79 is frequently overexpressed in cell lines and tissues derived from non-small cell lung cancer (NSCLC) and it accelerates cell proliferation in NSCLC. However, the detailed mechanism underlying the role of WDR79 in the proliferation of NSCLC cells remains unclear. Here, we report the discovery of a molecular interaction between WDR79 and USP7 and show its functional significance in linking the Mdm2-p53 pathway to the proliferation of NSCLC cells. We found that WDR79 colocalized and interacted with USP7 in the nucleus of NSCLC cells. This event, in turn, reduced the ubiquitination of Mdm2 and p53, thereby increasing the stability and extending the half-life of the two proteins. We further found that the functional effects of WDR79 depended upon USP7, because the knockdown of USP7 resulted in their attenuation. Finally, we demonstrated that WDR79 promoted the proliferation of NSCLC cells via USP7. Taken together, our findings reveal a novel molecular function of WDR79 and may lead to broadly applicable and innovative therapeutic avenues for NSCLC.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          A genomic and functional inventory of deubiquitinating enzymes.

          Posttranslational modification of proteins by the small molecule ubiquitin is a key regulatory event, and the enzymes catalyzing these modifications have been the focus of many studies. Deubiquitinating enzymes, which mediate the removal and processing of ubiquitin, may be functionally as important but are less well understood. Here, we present an inventory of the deubiquitinating enzymes encoded in the human genome. In addition, we review the literature concerning these enzymes, with particular emphasis on their function, specificity, and the regulation of their activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Defining the human deubiquitinating enzyme interaction landscape.

            Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The WD repeat: a common architecture for diverse functions.

              Our knowledge of the large family of proteins that contain the WD repeat continues to accumulate. The WD-repeat proteins are found in all eukaryotes and are implicated in a wide variety of crucial functions. The solution of the three-dimensional structure of one WD-repeat protein and the assumption that the structure will be common to all members of this family has allowed subfamilies of WD-repeat proteins to be defined on the basis of probable surface similarity. Proteins that have very similar surfaces are likely to have common binding partners and similar functions.
                Bookmark

                Author and article information

                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group
                2041-4889
                April 2017
                13 April 2017
                1 April 2017
                : 8
                : 4
                : e2743
                Affiliations
                [1 ]Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University , Changsha, Hunan 410082, China
                [2 ]Department of Gynecology, Xiangya Hospital, Central South University , Changsha, Hunan 410078, China
                [3 ]College of Life and Environmental Sciences, Gannan Normal University , Ganzhou, Jiangxi 341000, China
                [4 ]School of Life Sciences, State Key Laboratory of Medical Genetics, Central South University , Changsha, Hunan 410078, China
                Author notes
                [* ]College of Biology, Hunan University , 1 Denggao Road, Yuelu District, Changsha, Hunan 410082, China. Tel: +86 731 888 21834; Fax: +86 731 888 21894; E-mail: tan@ 123456chem.ufl.edu or yemaocsu@ 123456hotmail.com
                [5]

                These authors contributed equally to this work.

                Article
                cddis2017162
                10.1038/cddis.2017.162
                5477585
                28406480
                6b65178a-f759-4541-b1d1-bb1e1e4b4c06
                Copyright © 2017 The Author(s)

                Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 03 December 2016
                : 02 March 2017
                : 13 March 2017
                Categories
                Original Article

                Cell biology
                Cell biology

                Comments

                Comment on this article