3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of an RNA Silencing Suppressor Encoded by a Symptomless Fungal Hypovirus, Cryphonectria Hypovirus 4

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Host antiviral defense/viral counter-defense is an interesting topic in modern virology. RNA silencing is the primary antiviral mechanism in insects, plants, and fungi, while viruses encode and utilize RNA silencing suppressors against the host defense. Hypoviruses are positive-sense single-stranded RNA viruses with phylogenetic affinity to the picorna-like supergroup, including animal poliovirus and plant potyvirus. The prototype hypovirus Cryphonectria hypovirus 1, CHV1, is one of the best-studied fungal viruses. It is known to induce hypovirulence in the chestnut blight fungus, Cryphonectria parasitica, and encode an RNA silencing suppressor. CHV4 is another hypovirus asymptomatically that infects the same host fungus. This study shows that the N-terminal portion of the CHV4 polyprotein, termed p24, is a protease that autocatalytically cleaves itself from the rest of the viral polyprotein, and functions as an antiviral RNA silencing suppressor.

          Abstract

          Previously, we have reported the ability of a symptomless hypovirus Cryphonectria hypovirus 4 (CHV4) of the chestnut blight fungus to facilitate stable infection by a co-infecting mycoreovirus 2 (MyRV2)—likely through the inhibitory effect of CHV4 on RNA silencing (Aulia et al., Virology, 2019). In this study, the N-terminal portion of the CHV4 polyprotein, termed p24, is identified as an autocatalytic protease capable of suppressing host antiviral RNA silencing. Using a bacterial expression system, CHV4 p24 is shown to cleave autocatalytically at the di-glycine peptide (Gly214-Gly215) of the polyprotein through its protease activity. Transgenic expression of CHV4 p24 in Cryphonectria parasitica suppresses the induction of one of the key genes of the antiviral RNA silencing, dicer-like 2, and stabilizes the infection of RNA silencing-susceptible virus MyRV2. This study shows functional similarity between CHV4 p24 and its homolog p29, encoded by the symptomatic prototype hypovirus CHV1.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          RNA-based antiviral immunity.

          In eukaryotic RNA-based antiviral immunity, viral double-stranded RNA is recognized as a pathogen-associated molecular pattern and processed into small interfering RNAs (siRNAs) by the host ribonuclease Dicer. After amplification by host RNA-dependent RNA polymerases in some cases, these virus-derived siRNAs guide specific antiviral immunity through RNA interference and related RNA silencing effector mechanisms. Here, I review recent studies on the features of viral siRNAs and other virus-derived small RNAs from virus-infected fungi, plants, insects, nematodes and vertebrates and discuss the innate and adaptive properties of RNA-based antiviral immunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence.

            RNA silencing is a homology-dependent gene inactivation mechanism that regulates a wide range of biological processes including antiviral defense. To deal with host antiviral responses viruses evolved mechanisms to avoid or counteract this, most notably through expression of viral suppressors of RNA silencing. Besides working as silencing suppressors, these proteins may also fulfill other functions during infection. In many cases the interplay between the suppressor function and other "unrelated" functions remains elusive. We will present host factors implicated in antiviral pathways and summarize the current status of knowledge about the diverse viral suppressors' strategies acting at various steps of antiviral silencing in plants. Besides, we will consider the multi-functionality of these versatile proteins and related biochemical processes in which they may be involved in fine-tuning the plant-virus interaction. Finally, we will present the current applications and discuss perspectives of the use of these proteins in molecular biology and biotechnology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence that RNA silencing functions as an antiviral defense mechanism in fungi.

              The role of RNA silencing as an antiviral defense mechanism in fungi was examined by testing the effect of dicer gene disruptions on mycovirus infection of the chestnut blight fungus Cryphonectria parasitica. C. parasitica dicer-like genes dcl-1 and dcl-2 were cloned and shown to share a high level of predicted amino acid sequence identity with the corresponding dicer-like genes from Neurospora crassa [Ncdcl-1 (50.5%); Ncdcl-2 (38.0%)] and Magnaporthe oryzae [MDL-1 (45.6%); MDL-2 (38.0%)], respectively. Disruption of dcl-1 and dcl-2 resulted in no observable phenotypic changes relative to wild-type C. parasitica. Infection of Deltadcl-1 strains with hypovirus CHV1-EP713 or reovirus MyRV1-Cp9B21 resulted in phenotypic changes that were indistinguishable from that exhibited by wild-type strain C. parasitica EP155 infected with these same viruses. In stark contrast, the Deltadcl-2 and Deltadcl-1/Deltadcl-2 mutant strains were highly susceptible to mycovirus infection, with CHV1-EP713-infected mutant strains becoming severely debilitated. Increased viral RNA levels were observed in the Deltadcl-2 mutant strains for a hypovirus CHV1-EP713 mutant lacking the suppressor of RNA silencing p29 and for wild-type reovirus MyRV1-Cp9B21. Complementation of the Deltadcl-2 strain with the wild-type dcl-2 gene resulted in reversion to the wild-type response to virus infection. These results provide direct evidence that a fungal dicer-like gene functions to regulate virus infection.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Biology (Basel)
                Biology (Basel)
                biology
                Biology
                MDPI
                2079-7737
                31 January 2021
                February 2021
                : 10
                : 2
                : 100
                Affiliations
                [1 ]Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan; annisa.aulia29@ 123456gmail.com (A.A.); khyodo@ 123456okayama-u.ac.jp (K.H.); shisano@ 123456okayama-u.ac.jp (S.H.); hkondo@ 123456okayama-u.ac.jp (H.K.)
                [2 ]Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
                [3 ]Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA; bradley.hillman@ 123456rutgers.edu
                Author notes
                [* ]Correspondence: nsuzuki@ 123456okayama-u.ac.jp ; Tel.: +81-(086)-434-1230
                Author information
                https://orcid.org/0000-0003-3849-7975
                Article
                biology-10-00100
                10.3390/biology10020100
                7912522
                33572564
                6c271be3-4246-4636-b61f-2fedee7e8ccd
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 January 2021
                : 28 January 2021
                Categories
                Article

                mycovirus,reovirus,hypovirus,cryphonectria parasitica,co-infection,rna silencing,rnai suppressor,chestnut blight fungus,dicer

                Comments

                Comment on this article