+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Cytoplasmic Dynein Is Required for Distinct Aspects of Mtoc Positioning, Including Centrosome Separation, in the One Cell Stage Caenorhabditis elegans Embryo

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          We have investigated the role of cytoplasmic dynein in microtubule organizing center (MTOC) positioning using RNA-mediated interference (RNAi) in Caenorhabditis elegans to deplete the product of the dynein heavy chain gene dhc-1. Analysis with time-lapse differential interference contrast microscopy and indirect immunofluorescence revealed that pronuclear migration and centrosome separation failed in one cell stage dhc-1 (RNAi) embryos. These phenotypes were also observed when the dynactin components p50/dynamitin or p150 Glued were depleted with RNAi. Moreover, in 15% of dhc-1 (RNAi) embryos, centrosomes failed to remain in proximity of the male pronucleus. When dynein heavy chain function was diminished only partially with RNAi, centrosome separation took place, but orientation of the mitotic spindle was defective. Therefore, cytoplasmic dynein is required for multiple aspects of MTOC positioning in the one cell stage C. elegans embryo. In conjunction with our observation of cytoplasmic dynein distribution at the periphery of nuclei, these results lead us to propose a mechanism in which cytoplasmic dynein anchored on the nucleus drives centrosome separation.

          Related collections

          Most cited references 51

          • Record: found
          • Abstract: found
          • Article: not found

          Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.

           S Kostas,  A Fire,  S Xu (1998)
          Experimental introduction of RNA into cells can be used in certain biological systems to interfere with the function of an endogenous gene. Such effects have been proposed to result from a simple antisense mechanism that depends on hybridization between the injected RNA and endogenous messenger RNA transcripts. RNA interference has been used in the nematode Caenorhabditis elegans to manipulate gene expression. Here we investigate the requirements for structure and delivery of the interfering RNA. To our surprise, we found that double-stranded RNA was substantially more effective at producing interference than was either strand individually. After injection into adult animals, purified single strands had at most a modest effect, whereas double-stranded mixtures caused potent and specific interference. The effects of this interference were evident in both the injected animals and their progeny. Only a few molecules of injected double-stranded RNA were required per affected cell, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process.
            • Record: found
            • Abstract: found
            • Article: not found

            The embryonic cell lineage of the nematode Caenorhabditis elegans.

            The embryonic cell lineage of Caenorhabditis elegans has been traced from zygote to newly hatched larva, with the result that the entire cell lineage of this organism is now known. During embryogenesis 671 cells are generated; in the hermaphrodite 113 of these (in the male 111) undergo programmed death and the remainder either differentiate terminally or become postembryonic blast cells. The embryonic lineage is highly invariant, as are the fates of the cells to which it gives rise. In spite of the fixed relationship between cell ancestry and cell fate, the correlation between them lacks much obvious pattern. Thus, although most neurons arise from the embryonic ectoderm, some are produced by the mesoderm and a few are sisters to muscles; again, lineal boundaries do not necessarily coincide with functional boundaries. Nevertheless, cell ablation experiments (as well as previous cell isolation experiments) demonstrate substantial cell autonomy in at least some sections of embryogenesis. We conclude that the cell lineage itself, complex as it is, plays an important role in determining cell fate. We discuss the origin of the repeat units (partial segments) in the body wall, the generation of the various orders of symmetry, the analysis of the lineage in terms of sublineages, and evolutionary implications.
              • Record: found
              • Abstract: found
              • Article: not found

              Overexpression of the Dynamitin (p50) Subunit of the Dynactin Complex Disrupts Dynein-dependent Maintenance of Membrane Organelle Distribution

              Dynactin is a multisubunit complex that plays an accessory role in cytoplasmic dynein function. Overexpression in mammalian cells of one dynactin subunit, dynamitin, disrupts the complex, resulting in dissociation of cytoplasmic dynein from prometaphase kinetochores, with consequent perturbation of mitosis (Echeverri, C.J., B.M. Paschal, K.T. Vaughan, and R.B. Vallee. 1996. J. Cell Biol. 132:617–634). Based on these results, dynactin was proposed to play a role in linking cytoplasmic dynein to kinetochores and, potentially, to membrane organelles. The current study reports on the dynamitin interphase phenotype. In dynamitin-overexpressing cells, early endosomes (labeled with antitransferrin receptor), as well as late endosomes and lysosomes (labeled with anti–lysosome-associated membrane protein-1 [LAMP-1]), were redistributed to the cell periphery. This redistribution was disrupted by nocodazole, implicating an underlying plus end–directed microtubule motor activity. The Golgi stack, monitored using sialyltransferase, galactosyltransferase, and N-acetylglucosaminyltransferase I, was dramatically disrupted into scattered structures that colocalized with components of the intermediate compartment (ERGIC-53 and ERD-2). The disrupted Golgi elements were revealed by EM to represent short stacks similar to those formed by microtubule-depolymerizing agents. Golgi-to-ER traffic of stack markers induced by brefeldin A was not inhibited by dynamitin overexpression. Time-lapse observations of dynamitin-overexpressing cells recovering from brefeldin A treatment revealed that the scattered Golgi elements do not undergo microtubule-based transport as seen in control cells, but rather, remain stationary at or near their ER exit sites. These results indicate that dynactin is specifically required for ongoing centripetal movement of endocytic organelles and components of the intermediate compartment. Results similar to those of dynamitin overexpression were obtained by microinjection with antidynein intermediate chain antibody, consistent with a role for dynactin in mediating interactions of cytoplasmic dynein with specific membrane organelles. These results suggest that dynamitin plays a pivotal role in regulating organelle movement at the level of motor–cargo binding.

                Author and article information

                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                4 October 1999
                : 147
                : 1
                : 135-150
                [a ]European Molecular Biology Laboratory, Heidelberg, D-69117 Germany
                [b ]Max-Planck Institute for Cell Biology and Genetics, Dresden, D-01307 Germany
                © 1999 The Rockefeller University Press
                Original Article

                Cell biology

                mtoc positioning, rnai, mitosis, minus end–directed motor, microtubules


                Comment on this article