17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      T granules in human platelets function in TLR9 organization and signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          TLR9 localizes to a novel intracellular compartment called the T granule to promote immune signaling by platelets.

          Abstract

          Human and murine platelets (PLTs) variably express toll-like receptors (TLRs), which link the innate and adaptive immune responses during infectious inflammation and atherosclerotic vascular disease. In this paper, we show that the TLR9 transcript is specifically up-regulated during pro-PLT production and is distributed to a novel electron-dense tubular system-related compartment we have named the T granule. TLR9 colocalizes with protein disulfide isomerase and is associated with either VAMP 7 or VAMP 8, which regulates its distribution in PLTs on contact activation (spreading). Preincubation of PLTs with type IV collagen specifically increased TLR9 and CD62P surface expression and augmented oligodeoxynucleotide (ODN) sequestration and PLT clumping upon addition of bacterial/viral ODNs. Collectively, this paper (a) tracks TLR9 to a new intracellular compartment in PLTs and (b) describes a novel mechanism of TLR9 organization and signaling in human PLTs.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood.

          It has been known for many years that neutrophils and platelets participate in the pathogenesis of severe sepsis, but the inter-relationship between these players is completely unknown. We report several cellular events that led to enhanced trapping of bacteria in blood vessels: platelet TLR4 detected TLR4 ligands in blood and induced platelet binding to adherent neutrophils. This led to robust neutrophil activation and formation of neutrophil extracellular traps (NETs). Plasma from severely septic humans also induced TLR4-dependent platelet-neutrophil interactions, leading to the production of NETs. The NETs retained their integrity under flow conditions and ensnared bacteria within the vasculature. The entire event occurred primarily in the liver sinusoids and pulmonary capillaries, where NETs have the greatest capacity for bacterial trapping. We propose that platelet TLR4 is a threshold switch for this new bacterial trapping mechanism in severe sepsis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting Toll-like receptors: emerging therapeutics?

            There is a growing interest in the targeting of Toll-like receptors (TLRs) for the prevention and treatment of cancer, rheumatoid arthritis, inflammatory bowel disease and systemic lupus erythematosus (SLE). Several new compounds are now undergoing preclinical and clinical evaluation, with a particular focus on TLR7 and TLR9 activators as adjuvants in infection and cancer, and inhibitors of TLR2, TLR4, TLR7 and TLR9 for the treatment of sepsis and inflammatory diseases. Here, we focus on TLRs that hold the most promise for drug discovery research, highlighting agents that are in the discovery phase and in clinical trials,and on the emerging new aspects of TLR-mediated signalling - such as control by ubiquitination and regulation by microRNAs - that might offer further possibilities of therapeutic manipulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition.

              The Toll-like receptor (TLR) family consists of phylogenetically conserved transmembrane proteins, which function as mediators of innate immunity for recognition of pathogen-derived ligands and subsequent cell activation via the Toll/IL-1R signal pathway. Here, we show that human TLR9 (hTLR9) expression in human immune cells correlates with responsiveness to bacterial deoxycytidylate-phosphate-deoxyguanylate (CpG)-DNA. Notably "gain of function" to immunostimulatory CpG-DNA is achieved by expressing TLR9 in human nonresponder cells. Transfection of either human or murine TLR9 conferred responsiveness in a CD14- and MD2-independent manner, yet required species-specific CpG-DNA motifs for initiation of the Toll/IL-1R signal pathway via MyD88. The optimal CpG motif for hTLR9 was GTCGTT, whereas the optimal murine sequence was GACGTT. Overall, these data suggest that hTLR9 conveys CpG-DNA responsiveness to human cells by directly engaging immunostimulating CpG-DNA.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                20 August 2012
                : 198
                : 4
                : 561-574
                Affiliations
                [1 ]Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115
                [2 ]Deparment of Medicine and [3 ]Department of Pediatrics, Harvard Medical School, Boston, MA 02115
                [4 ]Toronto Platelet Immunobiology Group, Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario M5B-1W8, Canada
                [5 ]Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112
                [6 ]Immune Disease Institute, Boston, MA 02115
                [7 ]Program in Cellular and Molecular Medicine, Children’s Hospital, Boston, MA 02115
                [8 ]Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115
                [9 ]Vascular Biology Program, Department of Surgery, Children’s Hospital, Boston, MA 02115
                Author notes
                Correspondence to Joseph E. Italiano Jr.: jitaliano@ 123456rics.bwh.harvard.edu .
                Article
                201111136
                10.1083/jcb.201111136
                3514030
                22908309
                74f6e18b-d214-43d6-b222-4ceba50ea35d
                © 2012 Thon et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 28 November 2011
                : 25 July 2012
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article