27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Selection on Coding and Regulatory Variation Maintains Individuality in Major Urinary Protein Scent Marks in Wild Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recognition of individuals by scent is widespread across animal taxa. Though animals can often discriminate chemical blends based on many compounds, recent work shows that specific protein pheromones are necessary and sufficient for individual recognition via scent marks in mice. The genetic nature of individuality in scent marks (e.g. coding versus regulatory variation) and the evolutionary processes that maintain diversity are poorly understood. The individual signatures in scent marks of house mice are the protein products of a group of highly similar paralogs in the major urinary protein ( Mup) gene family. Using the offspring of wild-caught mice, we examine individuality in the major urinary protein (MUP) scent marks at the DNA, RNA and protein levels. We show that individuality arises through a combination of variation at amino acid coding sites and differential transcription of central Mup genes across individuals, and we identify eSNPs in promoters. There is no evidence of post-transcriptional processes influencing phenotypic diversity as transcripts accurately predict the relative abundance of proteins in urine samples. The match between transcripts and urine samples taken six months earlier also emphasizes that the proportional relationships across central MUP isoforms in urine is stable. Balancing selection maintains coding variants at moderate frequencies, though pheromone diversity appears limited by interactions with vomeronasal receptors. We find that differential transcription of the central Mup paralogs within and between individuals significantly increases the individuality of pheromone blends. Balancing selection on gene regulation allows for increased individuality via combinatorial diversity in a limited number of pheromones.

          Author Summary

          Individual recognition via scent is critical for many aspects of behavior including parental care, competition, cooperation and mate choice. While animal scents can differ in a huge number of dimensions, recent work has shown that only some specialized semiochemicals in scent marks are behaviorally relevant for individual recognition. How is individuality in specialized semiochemical blends produced and maintained in populations? At the extremes, individuality may depend on either a plethora of semiochemical isoforms or on combinatorial variation in a small number of shared isoforms across individuals. Analyzing the major urinary protein (MUP) pheromone blends of a wild population of house mice, we find evidence in favor of a combinatorial diversity model for the production and maintenance of individuality. Balancing selection maintains MUP proteins at moderate frequencies in the population, though interactions with the pheromone receptors appear to limit the extent of pheromone diversity in the system. By contrast, differential transcription of proteins greatly increases individuality in pheromone blends with balancing selection maintaining diversity in promoter regions associated with gene expression patterns. Selection maintaining combinatorial diversity in a limited set of behaviorally important semiochemicals may be a widespread mechanism generating and maintaining individuality in scent across taxa.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Individual recognition: it is good to be different.

            Individual recognition (IR) behavior has been widely studied, uncovering spectacular recognition abilities across a range of taxa and modalities. Most studies of IR focus on the recognizer (receiver). These studies typically explore whether a species is capable of IR, the cues that are used for recognition and the specializations that receivers use to facilitate recognition. However, relatively little research has explored the other half of the communication equation: the individual being recognized (signaler). Provided there is a benefit to being accurately identified, signalers are expected to actively broadcast their identity with distinctive cues. Considering the prevalence of IR, there are probably widespread benefits associated with distinctiveness. As a result, selection for traits that reveal individual identity might represent an important and underappreciated selective force contributing to the evolution and maintenance of genetic polymorphisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Scent wars: the chemobiology of competitive signalling in mice.

              Many mammals use scent marks to advertise territory ownership, but only recently have we started to understand the complexity of these scent signals and the types of information that they convey. Whilst attention has generally focused on volatile odorants as the main information molecules in scents, studies of the house mouse have now defined a role for a family of proteins termed major urinary proteins (MUPs) which are, of course, involatile. MUPs bind male signalling volatiles and control their release from scent marks. These proteins are also highly polymorphic and the pattern of polymorphic variants provides a stable ownership signal that communicates genome-derived information on the individual identity of the scent owner. Here we review the interaction between the chemical basis of mouse scents and the dynamics of their competitive scent marking behaviour, demonstrating how it is possible to provide reliable signals of the competitive ability and identity of individual males. Copyright 2004 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, CA USA )
                1553-7390
                1553-7404
                3 March 2016
                March 2016
                : 12
                : 3
                : e1005891
                Affiliations
                [1 ]Neurobiology and Behavior, Cornell University, Ithaca, New York, United States of America
                [2 ]Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California, United States of America
                [3 ]Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
                [4 ]Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
                [5 ]Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
                [6 ]Computational Genomics Resource Laboratory (CGRL), California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, United States of America
                [7 ]Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston, United Kingdom
                Stanford University School of Medicine, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MJS MWN JLH RJB. Performed the experiments: MJS KB VL RCD. Analyzed the data: MJS. Contributed reagents/materials/analysis tools: MWN RJB JLH. Wrote the paper: MJS MWN RJB JLH.

                Article
                PGENETICS-D-15-02635
                10.1371/journal.pgen.1005891
                4777540
                26938775
                7a4b1d03-6046-4cf8-8dea-be3bf1235215
                © 2016 Sheehan et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 October 2015
                : 31 January 2016
                Page count
                Figures: 7, Tables: 2, Pages: 33
                Funding
                The work was funded by the National Institutes of Health awards F32 GM101863 to MJS and R01 GM074245 to MWN; Biotechnology and Biological Research Council grant BB/J002631/1 to JLH & RJB; and a University of California Berkeley Chancellor’s Postdoctoral Fellowship to RCD. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Urine
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Urine
                Biology and Life Sciences
                Physiology
                Body Fluids
                Urine
                Medicine and Health Sciences
                Physiology
                Body Fluids
                Urine
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Sequencing Techniques
                Sequence Analysis
                Sequence Motif Analysis
                Research and Analysis Methods
                Molecular Biology Techniques
                Sequencing Techniques
                Sequence Analysis
                Sequence Motif Analysis
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Sequencing Techniques
                Sequence Analysis
                Sequence Alignment
                Research and Analysis Methods
                Molecular Biology Techniques
                Sequencing Techniques
                Sequence Analysis
                Sequence Alignment
                Biology and Life Sciences
                Evolutionary Biology
                Population Genetics
                Biology and Life Sciences
                Genetics
                Population Genetics
                Biology and Life Sciences
                Population Biology
                Population Genetics
                Biology and Life Sciences
                Genetics
                Gene Expression
                Biology and Life Sciences
                Biochemistry
                Pheromones
                Biology and life sciences
                Genetics
                Gene expression
                DNA transcription
                Biology and Life Sciences
                Genetics
                Genomics
                Animal Genomics
                Mammalian Genomics
                Custom metadata
                All raw sequence data are available under PRJNA296513 NCBI short read archive. All other relevant data are within the paper and its Supporting Information files.

                Genetics
                Genetics

                Comments

                Comment on this article