73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Yeast Pif1 Helicase Prevents Genomic Instability Caused by G-Quadruplex-Forming CEB1 Sequences In Vivo

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In budding yeast, the Pif1 DNA helicase is involved in the maintenance of both nuclear and mitochondrial genomes, but its role in these processes is still poorly understood. Here, we provide evidence for a new Pif1 function by demonstrating that its absence promotes genetic instability of alleles of the G-rich human minisatellite CEB1 inserted in the Saccharomyces cerevisiae genome, but not of other tandem repeats. Inactivation of other DNA helicases, including Sgs1, had no effect on CEB1 stability. In vitro, we show that CEB1 repeats formed stable G-quadruplex (G4) secondary structures and the Pif1 protein unwinds these structures more efficiently than regular B-DNA. Finally, synthetic CEB1 arrays in which we mutated the potential G4-forming sequences were no longer destabilized in pif1Δ cells. Hence, we conclude that CEB1 instability in pif1Δ cells depends on the potential to form G-quadruplex structures, suggesting that Pif1 could play a role in the metabolism of G4-forming sequences.

          Author Summary

          Changes in the primary DNA sequence are a major source of pathologies and cancers. The hereditary information also resides in secondary DNA structures, a layer of genetic information that remains poorly understood. Biophysical and structural studies have long established that, in vitro, the DNA molecule can adopt diverse structures different from the canonical Watson-Crick conformations. However, for a long time their existence in vivo has been regarded with a certain skepticism and their functional role elusive. One example is the G-quadruplex structure, which involves G-quartets that form between four DNA strands. Here, using in vitro and in vivo assays in the yeast S. cerevisiae, we reveal the unexpected role of the Pif1 helicase in maintaining the stability of the human CEB1 G-rich tandem repeat array. By site-directed mutagenesis, we show that the genomic instability of CEB1 repeats in absence of Pif1 and is directly dependent on the ability of CEB1 to form G-quadruplex structures. We show that Pif1 is very efficient in vitro in processing G-quadruplex structures formed by CEB1. We propose that Pif1 maintains CEB1 repeats by its ability to resolve G-quadruplex structures, thus providing circumstantial evidence of their formation in vivo.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends.

          Formation of single-strand DNA (ssDNA) tails at a double-strand break (DSB) is a key step in homologous recombination and DNA-damage signaling. The enzyme(s) producing ssDNA at DSBs in eukaryotes remain unknown. We monitored 5'-strand resection at inducible DSB ends in yeast and identified proteins required for two stages of resection: initiation and long-range 5'-strand resection. We show that the Mre11-Rad50-Xrs2 complex (MRX) initiates 5' degradation, whereas Sgs1 and Dna2 degrade 5' strands exposing long 3' strands. Deletion of SGS1 or DNA2 reduces resection and DSB repair by single-strand annealing between distant repeats while the remaining long-range resection activity depends on the exonuclease Exo1. In exo1Deltasgs1Delta double mutants, the MRX complex together with Sae2 nuclease generate, in a stepwise manner, only few hundred nucleotides of ssDNA at the break, resulting in inefficient gene conversion and G2/M damage checkpoint arrest. These results provide important insights into the early steps of DSB repair in eukaryotes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing.

            DNA ends exposed after introduction of double-strand breaks (DSBs) undergo 5'-3' nucleolytic degradation to generate single-stranded DNA, the substrate for binding by the Rad51 protein to initiate homologous recombination. This process is poorly understood in eukaryotes, but several factors have been implicated, including the Mre11 complex (Mre11-Rad50-Xrs2/NBS1), Sae2/CtIP/Ctp1 and Exo1. Here we demonstrate that yeast Exo1 nuclease and Sgs1 helicase function in alternative pathways for DSB processing. Novel, partially resected intermediates accumulate in a double mutant lacking Exo1 and Sgs1, which are poor substrates for homologous recombination. The early processing step that generates partly resected intermediates is dependent on Sae2. When Sae2 is absent, in addition to Exo1 and Sgs1, unprocessed DSBs accumulate and homology-dependent repair fails. These results suggest a two-step mechanism for DSB processing during homologous recombination. First, the Mre11 complex and Sae2 remove a small oligonucleotide(s) from the DNA ends to form an early intermediate. Second, Exo1 and/or Sgs1 rapidly process this intermediate to generate extensive tracts of single-stranded DNA that serve as substrate for Rad51.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Defective telomere lagging strand synthesis in cells lacking WRN helicase activity.

              Cells from Werner syndrome patients are characterized by slow growth rates, premature senescence, accelerated telomere shortening rates, and genome instability. The syndrome is caused by the loss of the RecQ helicase WRN, but the underlying molecular mechanism is unclear. Here we report that cells lacking WRN exhibit deletion of telomeres from single sister chromatids. Only telomeres replicated by lagging strand synthesis were affected, and prevention of loss of individual telomeres was dependent on the helicase activity of WRN. Telomere loss could be counteracted by telomerase activity. We propose that WRN is necessary for efficient replication of G-rich telomeric DNA, preventing telomere dysfunction and consequent genomic instability.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                May 2009
                May 2009
                8 May 2009
                : 5
                : 5
                : e1000475
                Affiliations
                [1 ]Recombinaison et Instabilité Génétique, Institut Curie Centre de Recherche, CNRS UMR3244, Université Pierre et Marie Curie, Paris, France
                [2 ]Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
                [3 ]Laboratoire de Biophysique, Museum National d'Histoire Naturelle USM 503, INSERM U565, CNRS UMR5153, Paris, France
                National Institute of Diabetes and Digestive and Kidney Diseases, United States of America
                Author notes
                [¤]

                Current address: Department of Molecular Biology, University of Geneva, Geneva, Switzerland

                Conceived and designed the experiments: CR JL JBB JLM AN. Performed the experiments: CR JL JBB AP AG JLM. Analyzed the data: CR JL JBB AP VAZ JLM AN. Wrote the paper: CR JL JBB VAZ JLM AN.

                Article
                09-PLGE-RA-0046R2
                10.1371/journal.pgen.1000475
                2673046
                19424434
                7c5c18ac-f94e-43d5-a66c-348005f8be4f
                Ribeyre et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 12 January 2009
                : 8 April 2009
                Page count
                Pages: 14
                Categories
                Research Article
                Biochemistry/Replication and Repair
                Biophysics/Replication and Repair
                Genetics and Genomics/Chromosome Biology

                Genetics
                Genetics

                Comments

                Comment on this article