0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Overexpression of HIF ‐1α enhances the protective effect of mitophagy on steroid‐induced osteocytes apoptosis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness

          Signaling through the Ror2 receptor tyrosine kinase promotes invadopodia formation for tumor invasion. Here, we identify intraflagellar transport 20 (IFT20) as a new target of this signaling in tumors that lack primary cilia, and find that IFT20 mediates the ability of Ror2 signaling to induce the invasiveness of these tumors. We also find that IFT20 regulates the nucleation of Golgi-derived microtubules by affecting the GM130-AKAP450 complex, which promotes Golgi ribbon formation in achieving polarized secretion for cell migration and invasion. Furthermore, IFT20 promotes the efficiency of transport through the Golgi complex. These findings shed new insights into how Ror2 signaling promotes tumor invasiveness, and also advance the understanding of how Golgi structure and transport can be regulated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia.

            Autophagy is a process by which cytoplasmic organelles can be catabolized either to remove defective structures or as a means of providing macromolecules for energy generation under conditions of nutrient starvation. In this study we demonstrate that mitochondrial autophagy is induced by hypoxia, that this process requires the hypoxia-dependent factor-1-dependent expression of BNIP3 and the constitutive expression of Beclin-1 and Atg5, and that in cells subjected to prolonged hypoxia, mitochondrial autophagy is an adaptive metabolic response which is necessary to prevent increased levels of reactive oxygen species and cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of mitophagy.

              Autophagy not only recycles intracellular components to compensate for nutrient deprivation but also selectively eliminates organelles to regulate their number and maintain quality control. Mitophagy, the specific autophagic elimination of mitochondria, has been identified in yeast, mediated by autophagy-related 32 (Atg32), and in mammals during red blood cell differentiation, mediated by NIP3-like protein X (NIX; also known as BNIP3L). Moreover, mitophagy is regulated in many metazoan cell types by parkin and PTEN-induced putative kinase protein 1 (PINK1), and mutations in the genes encoding these proteins have been linked to forms of Parkinson's disease.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Environmental Toxicology
                Environmental Toxicology
                Wiley
                1520-4081
                1522-7278
                November 2021
                July 26 2021
                November 2021
                : 36
                : 11
                : 2123-2137
                Affiliations
                [1 ]Department of Orthopaedics of the First Affiliated Hospital Medical School, Xi'an Jiaotong University Xi'an China
                [2 ]Department of Joint Surgery Hong Hui Hospital, Xi'an Jiaotong University Xi'an China
                Article
                10.1002/tox.23327
                34310007
                7e668577-342f-4288-8f38-8a28f8639f29
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article