62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of the Signal That Directs Tom20 to the Mitochondrial Outer Membrane

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tom20 is a major receptor of the mitochondrial preprotein translocation system and is bound to the outer membrane through the NH 2-terminal transmembrane domain (TMD) in an Nin-Ccyt orientation. We analyzed the mitochondria-targeting signal of rat Tom20 (rTom20) in COS-7 cells, using green fluorescent protein (GFP) as the reporter by systematically introducing deletions or mutations into the TMD or the flanking regions. Moderate TMD hydrophobicity and a net positive charge within five residues of the COOH-terminal flanking region were both critical for mitochondria targeting. Constructs without net positive charges within the flanking region, as well as those with high TMD hydrophobicity, were targeted to the ER-Golgi compartments. Intracellular localization of rTom20-GFP fusions, determined by fluorescence microscopy, was further verified by cell fractionation. The signal recognition particle (SRP)–induced translation arrest and photo–cross-linking demonstrated that SRP recognized the TMD of rTom20-GFP, but with reduced affinity, while the positive charge at the COOH-terminal flanking segment inhibited the translation arrest. The mitochondria-targeting signal identified in vivo also functioned in the in vitro system. We conclude that NH 2-terminal TMD with a moderate hydrophobicity and a net positive charge in the COOH-terminal flanking region function as the mitochondria-targeting signal of the outer membrane proteins, evading SRP-dependent ER targeting.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum.

          The capacity of microsomal membranes to translocate nascent presecretory proteins across their lipid bilayer can be largely abolished by extracting them with high ionic strength buffers. It can be reconstituted by adding the salt extract back to the depleted membranes [Warren, G. & Doberstein, B. (1978) Nature (London) 273, 569-571]. Utilizing hydrophobic chromatography, we purified to homogeneity a protein component of the salt extract that reconstitutes the translocation activity of the extracted membranes. This component behaves as a homogeneous species upon gel filtration, ion-exchange chromatography, adsorption chromatography, and sucrose-gradient centrifugation. When examined by polyacrylamide gel electrophoresis in NaDodSO4, six polypeptides with apparent Mr of 72,000, 68,000, 54,000, 19,000, 14,000, and 9000 are observed in about equal and constant stoichiometry, suggesting that they are subunits of a complex. The sedimentation coefficient of 11S is in good agreement with the sum of the Mr of the subunits. The Mr 68,000 and 9000 subunits label intensely with N-[3H]ethylmaleimide. Thus, the reported sulfhydryl group requirement of the translocation activity in the unfractionated extract [Jackson, R. C., Walter, P. & Blobel, G. (1980) Nature (London), 286, 174-176] may be localized to either or both the Mr 68,000 and 9000 subunits of the purified complex.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of a cis-Golgi matrix protein, GM130

            Antisera raised to a detergent- and salt-resistant matrix fraction from rat liver Golgi stacks were used to screen an expression library from rat liver cDNA. A full-length clone was obtained encoding a protein of 130 kD (termed GM130), the COOH-terminal domain of which was highly homologous to a Golgi human auto-antigen, golgin-95 (Fritzler et al., 1993). Biochemical data showed that GM130 is a peripheral cytoplasmic protein that is tightly bound to Golgi membranes and part of a larger oligomeric complex. Predictions from the protein sequence suggest that GM130 is an extended rod-like protein with coiled-coil domains. Immunofluorescence microscopy showed partial overlap with medial- and trans-Golgi markers but almost complete overlap with the cis-Golgi network (CGN) marker, syntaxin5. Immunoelectron microscopy confirmed this location showing that most of the GM130 was located in the CGN and in one or two cisternae on the cis-side of the Golgi stack. GM130 was not re-distributed to the ER in the presence of brefeldin A but maintained its overlap with syntaxin5 and a partial overlap with the ER- Golgi intermediate compartment marker, p53. Together these results suggest that GM130 is part of a cis-Golgi matrix and has a role in maintaining cis-Golgi structure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signal sequences: more than just greasy peptides.

              Export signal sequences target newly synthesized proteins to the endoplasmic reticulum of eukaryotic cells and the plasma membrane of bacteria. All signal sequences contain a hydrophobic core region, but, despite this, they show great variation in both overall length and amino acid sequence. Recently, it has become clear that this variation allows signal sequences to specify different modes of targeting and membrane insertion and even to perform functions after being cleaved from the parent protein. This review argues that signal sequences are not simply greasy peptides but sophisticated, multipurpose peptides containing a wealth of functional information.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                16 October 2000
                : 151
                : 2
                : 277-288
                Affiliations
                [a ]Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
                Article
                0003112
                10.1083/jcb.151.2.277
                2192658
                11038175
                80d99a87-8bcb-4798-8d41-a5c334250c0d
                © 2000 The Rockefeller University Press
                History
                : 21 March 2000
                : 7 August 2000
                : 1 September 2000
                Categories
                Original Article

                Cell biology
                protein import,signal-anchor sequence,sorting signal,mitochondria,signal recognition particle

                Comments

                Comment on this article