0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DNA barcoding of reef‐associated fishes of Saint Martin's Island, Northern Bay of Bengal, Bangladesh

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study employs the DNA barcoding approach to make a molecular taxonomic catalog of reef fishes of Saint Martin's Island (SMI), an ecologically critical area (ECA), and Marine Protected Area (MPA) in Bangladesh. DNA barcoding, along with morphological analysis, confirmed 84 reef‐associated fish species in SMI belonging to 16 orders, 39 families, and 67 genera. A total of 184 sequences were obtained in this study where 151 sequences (534–604 bp) of 81 species were identified from the COI barcode gene and 33 sequences (609 bp) of 19 species from the 16S rRNA gene region which were submitted to the GenBank and Barcode of Life Data System (BOLD). Among these sequences, 70 sequences of the COI gene and 16 sequences of 16S rRNA gene region from 41 species were submitted for the first time into the GenBank from Bangladesh. For molecular characterization analysis, another 37 sequences of 15 reef fish species of SMI were added from previous studies, making a total of 221 DNA sequences which comprised 179 sequences of 96 species for the COI gene and 42 sequences of 26 species for the 16S rRNA gene region. The COI sequences contain 145 haplotypes with 337 polymorphic sites, and the mean genetic distances within species, genera, and families were calculated as 0.34%, 12.26%, and 19.03%, respectively. On the contrary, 16S rRNA sequences comprised 31 haplotypes with 241 polymorphic sites, and the mean genetic divergences within species, genera, and families were 0.94%, 4.72%, and 12.43%, respectively. This study is a significant contribution to the marine biodiversity of Bangladesh which would facilitate the assessment of species diversity for strategizing management action. It is also an important input to the DNA barcode library of reef fishes of the northern Bay of Bengal.

          Abstract

          Figures 2 and 6 consist of all the species that were sequenced and identified in this study. It also shows the phylogenetic relationship of the studied species.

          Related collections

          Most cited references117

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies

          Large phylogenomics data sets require fast tree inference methods, especially for maximum-likelihood (ML) phylogenies. Fast programs exist, but due to inherent heuristics to find optimal trees, it is not clear whether the best tree is found. Thus, there is need for additional approaches that employ different search strategies to find ML trees and that are at the same time as fast as currently available ML programs. We show that a combination of hill-climbing approaches and a stochastic perturbation method can be time-efficiently implemented. If we allow the same CPU time as RAxML and PhyML, then our software IQ-TREE found higher likelihoods between 62.2% and 87.1% of the studied alignments, thus efficiently exploring the tree-space. If we use the IQ-TREE stopping rule, RAxML and PhyML are faster in 75.7% and 47.1% of the DNA alignments and 42.2% and 100% of the protein alignments, respectively. However, the range of obtaining higher likelihoods with IQ-TREE improves to 73.3-97.1%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates

            Model-based molecular phylogenetics plays an important role in comparisons of genomic data, and model selection is a key step in all such analyses. We present ModelFinder, a fast model-selection method that greatly improves the accuracy of phylogenetic estimates. The improvement is achieved by incorporating a model of rate-heterogeneity across sites not previously considered in this context, and by allowing concurrent searches of model-space and tree-space.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.

              Some simple formulae were obtained which enable us to estimate evolutionary distances in terms of the number of nucleotide substitutions (and, also, the evolutionary rates when the divergence times are known). In comparing a pair of nucleotide sequences, we distinguish two types of differences; if homologous sites are occupied by different nucleotide bases but both are purines or both pyrimidines, the difference is called type I (or "transition" type), while, if one of the two is a purine and the other is a pyrimidine, the difference is called type II (or "transversion" type). Letting P and Q be respectively the fractions of nucleotide sites showing type I and type II differences between two sequences compared, then the evolutionary distance per site is K = -(1/2) ln [(1-2P-Q) square root of 1-2Q]. The evolutionary rate per year is then given by k = K/(2T), where T is the time since the divergence of the two sequences. If only the third codon positions are compared, the synonymous component of the evolutionary base substitutions per site is estimated by K'S = -(1/2) ln (1-2P-Q). Also, formulae for standard errors were obtained. Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution.
                Bookmark

                Author and article information

                Contributors
                habibka@sau.edu.bd
                Journal
                Ecol Evol
                Ecol Evol
                10.1002/(ISSN)2045-7758
                ECE3
                Ecology and Evolution
                John Wiley and Sons Inc. (Hoboken )
                2045-7758
                22 October 2023
                October 2023
                : 13
                : 10 ( doiID: 10.1002/ece3.v13.10 )
                : e10641
                Affiliations
                [ 1 ] Department of Fisheries Biology and Genetics, Faculty of Fisheries, Aquaculture and Marine Science Sher‐e‐Bangla Agricultural University Dhaka Bangladesh
                [ 2 ] Aquatic Bioresource Research Lab, Department of Fisheries Biology and Genetics Sher‐e‐Bangla Agricultural University Dhaka Bangladesh
                Author notes
                [*] [* ] Correspondence

                Kazi Ahsan Habib, Department of Fisheries Biology and Genetics, Faculty of Fisheries, Aquaculture and Marine Science, Sher‐e‐Bangla Agricultural University, Dhaka, Bangladesh.

                Email: habibka@ 123456sau.edu.bd

                Author information
                https://orcid.org/0009-0009-7316-8502
                https://orcid.org/0000-0002-7612-6668
                https://orcid.org/0000-0003-2488-7884
                Article
                ECE310641 ECE-2023-04-00641.R2
                10.1002/ece3.10641
                10590961
                37877103
                82c6cf15-a73c-4f8d-893f-6fc0ea1a4bc4
                © 2023 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 09 October 2023
                : 23 May 2023
                : 10 October 2023
                Page count
                Figures: 9, Tables: 5, Pages: 18, Words: 9452
                Categories
                Taxonomy
                Nature Notes
                Nature Notes
                Custom metadata
                2.0
                October 2023
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.3.4 mode:remove_FC converted:23.10.2023

                Evolutionary Biology
                16s rrna,coi,mitochondrial dna,northern bay of bengal,reef‐associated fish
                Evolutionary Biology
                16s rrna, coi, mitochondrial dna, northern bay of bengal, reef‐associated fish

                Comments

                Comment on this article