28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Multilineage communication regulates human liver bud development from pluripotency

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Conventional two-dimensional differentiation from pluripotency fails to recapitulate cell interactions occurring during organogenesis. Three-dimensional organoids generate complex organ-like tissues; however, it is unclear how heterotypic interactions affect lineage identity. Here we use single-cell RNA sequencing to reconstruct hepatocyte-like lineage progression from pluripotency in two-dimensional culture. We then derive three-dimensional liver bud organoids by reconstituting hepatic, stromal, and endothelial interactions, and deconstruct heterogeneity during liver bud development. We find that liver bud hepatoblasts diverge from the two-dimensional lineage, and express epithelial migration signatures characteristic of organ budding. We benchmark three-dimensional liver buds against fetal and adult human liver single-cell RNA sequencing data, and find a striking correspondence between the three-dimensional liver bud and fetal liver cells. We use a receptor–ligand pairing analysis and a high-throughput inhibitor assay to interrogate signalling in liver buds, and show that vascular endothelial growth factor (VEGF) crosstalk potentiates endothelial network formation and hepatoblast differentiation. Our molecular dissection reveals interlineage communication regulating organoid development, and illuminates previously inaccessible aspects of human liver development.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B.

            NF-kappa B, which consists of two polypeptides, p50 (M(r) 50K) and p65/RelA (M(r) 65K), is thought to be a key regulator of genes involved in responses to infection, inflammation and stress. Indeed, although developmentally normal, mice deficient in p50 display functional defects in immune responses. Here we describe the generation of mice deficient in the RelA subunit of NF-kappa B. Disruption of the relA locus leads to embryonic lethality at 15-16 days of gestation, concomitant with a massive degeneration of the liver by programmed cell death or apoptosis. Embryonic fibroblasts from RelA-deficient mice are defective in the tumour necrosis factor (TNF)-mediated induction of messenger RNAs for I kappa B alpha and granulocyte/macrophage colony stimulating factor (GM-CSF), although basal levels of these transcripts are unaltered. These results indicate that RelA controls inducible, but not basal, transcription in NF-kappa B-regulated pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of hypoxia in development of the Mammalian embryo.

              Hypoxia inducible factor (HIF) is a transcription factor that acts in low-oxygen conditions. The cellular response to HIF activation is transcriptional upregulation of a large group of genes. Some target genes promote anaerobic metabolism to reduce oxygen consumption, while others "alleviate" hypoxia by acting non-cell-autonomously to extend and modify the surrounding vasculature. Although hypoxia is often thought of as being a pathological phenomenon, the mammalian embryo in fact develops in a low-oxygen environment, and in this context HIF has additional responsibilities. This review describes how low oxygen and HIF affect gene expression, cell behavior, and ultimately morphogenesis of the embryo and placenta. 2009 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Nature
                0028-0836
                1476-4687
                June 14 2017
                June 14 2017
                :
                :
                Article
                10.1038/nature22796
                28614297
                838a58f2-09a9-4e47-a568-c156bbac1746
                © 2017
                History

                Comments

                Comment on this article