2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Computational pipeline to probe NaV1.7 gain-of-function variants in neuropathic painful syndromes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Applications of machine learning and graph theory techniques to neuroscience have witnessed an increased interest in the last decade due to the large data availability and unprecedented technology developments. Their employment to investigate the effect of mutational changes in genes encoding for proteins modulating the membrane of excitable cells, whose biological correlates are assessed at electrophysiological level, could provide useful predictive clues. We apply this concept to the analysis of variants in sodium channel NaV1.7 subunit found in patients with chronic painful syndromes, by the implementation of a dedicated computational pipeline empowering different and complementary techniques including homology modeling, network theory, and machine learning. By testing three templates of different origin and sequence identities, we provide an optimal condition for its use. Our findings reveal the usefulness of our computational pipeline in supporting the selection of candidates for cell electrophysiology assay and with potential clinical applications.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SWISS-MODEL: homology modelling of protein structures and complexes

          Abstract Homology modelling has matured into an important technique in structural biology, significantly contributing to narrowing the gap between known protein sequences and experimentally determined structures. Fully automated workflows and servers simplify and streamline the homology modelling process, also allowing users without a specific computational expertise to generate reliable protein models and have easy access to modelling results, their visualization and interpretation. Here, we present an update to the SWISS-MODEL server, which pioneered the field of automated modelling 25 years ago and been continuously further developed. Recently, its functionality has been extended to the modelling of homo- and heteromeric complexes. Starting from the amino acid sequences of the interacting proteins, both the stoichiometry and the overall structure of the complex are inferred by homology modelling. Other major improvements include the implementation of a new modelling engine, ProMod3 and the introduction a new local model quality estimation method, QMEANDisCo. SWISS-MODEL is freely available at https://swissmodel.expasy.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A method and server for predicting damaging missense mutations

            To the Editor: Applications of rapidly advancing sequencing technologies exacerbate the need to interpret individual sequence variants. Sequencing of phenotyped clinical subjects will soon become a method of choice in studies of the genetic causes of Mendelian and complex diseases. New exon capture techniques will direct sequencing efforts towards the most informative and easily interpretable protein-coding fraction of the genome. Thus, the demand for computational predictions of the impact of protein sequence variants will continue to grow. Here we present a new method and the corresponding software tool, PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/), which is different from the early tool PolyPhen1 in the set of predictive features, alignment pipeline, and the method of classification (Fig. 1a). PolyPhen-2 uses eight sequence-based and three structure-based predictive features (Supplementary Table 1) which were selected automatically by an iterative greedy algorithm (Supplementary Methods). Majority of these features involve comparison of a property of the wild-type (ancestral, normal) allele and the corresponding property of the mutant (derived, disease-causing) allele, which together define an amino acid replacement. Most informative features characterize how well the two human alleles fit into the pattern of amino acid replacements within the multiple sequence alignment of homologous proteins, how distant the protein harboring the first deviation from the human wild-type allele is from the human protein, and whether the mutant allele originated at a hypermutable site2. The alignment pipeline selects the set of homologous sequences for the analysis using a clustering algorithm and then constructs and refines their multiple alignment (Supplementary Fig. 1). The functional significance of an allele replacement is predicted from its individual features (Supplementary Figs. 2–4) by Naïve Bayes classifier (Supplementary Methods). We used two pairs of datasets to train and test PolyPhen-2. We compiled the first pair, HumDiv, from all 3,155 damaging alleles with known effects on the molecular function causing human Mendelian diseases, present in the UniProt database, together with 6,321 differences between human proteins and their closely related mammalian homologs, assumed to be non-damaging (Supplementary Methods). The second pair, HumVar3, consists of all the 13,032 human disease-causing mutations from UniProt, together with 8,946 human nsSNPs without annotated involvement in disease, which were treated as non-damaging. We found that PolyPhen-2 performance, as presented by its receiver operating characteristic curves, was consistently superior compared to PolyPhen (Fig. 1b) and it also compared favorably with the three other popular prediction tools4–6 (Fig. 1c). For a false positive rate of 20%, PolyPhen-2 achieves the rate of true positive predictions of 92% and 73% on HumDiv and HumVar, respectively (Supplementary Table 2). One reason for a lower accuracy of predictions on HumVar is that nsSNPs assumed to be non-damaging in HumVar contain a sizable fraction of mildly deleterious alleles. In contrast, most of amino acid replacements assumed non-damaging in HumDiv must be close to selective neutrality. Because alleles that are even mildly but unconditionally deleterious cannot be fixed in the evolving lineage, no method based on comparative sequence analysis is ideal for discriminating between drastically and mildly deleterious mutations, which are assigned to the opposite categories in HumVar. Another reason is that HumDiv uses an extra criterion to avoid possible erroneous annotations of damaging mutations. For a mutation, PolyPhen-2 calculates Naïve Bayes posterior probability that this mutation is damaging and reports estimates of false positive (the chance that the mutation is classified as damaging when it is in fact non-damaging) and true positive (the chance that the mutation is classified as damaging when it is indeed damaging) rates. A mutation is also appraised qualitatively, as benign, possibly damaging, or probably damaging (Supplementary Methods). The user can choose between HumDiv- and HumVar-trained PolyPhen-2. Diagnostics of Mendelian diseases requires distinguishing mutations with drastic effects from all the remaining human variation, including abundant mildly deleterious alleles. Thus, HumVar-trained PolyPhen-2 should be used for this task. In contrast, HumDiv-trained PolyPhen-2 should be used for evaluating rare alleles at loci potentially involved in complex phenotypes, dense mapping of regions identified by genome-wide association studies, and analysis of natural selection from sequence data, where even mildly deleterious alleles must be treated as damaging. Supplementary Material 1
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              dbSNP: the NCBI database of genetic variation.

              S Sherry (2001)
              In response to a need for a general catalog of genome variation to address the large-scale sampling designs required by association studies, gene mapping and evolutionary biology, the National Center for Biotechnology Information (NCBI) has established the dbSNP database [S.T.Sherry, M.Ward and K. Sirotkin (1999) Genome Res., 9, 677-679]. Submissions to dbSNP will be integrated with other sources of information at NCBI such as GenBank, PubMed, LocusLink and the Human Genome Project data. The complete contents of dbSNP are available to the public at website: http://www.ncbi.nlm.nih.gov/SNP. The complete contents of dbSNP can also be downloaded in multiple formats via anonymous FTP at ftp://ncbi.nlm.nih.gov/snp/.
                Bookmark

                Author and article information

                Contributors
                simeoni@unive.it
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                21 October 2020
                21 October 2020
                2020
                : 10
                : 17930
                Affiliations
                [1 ]GRID grid.7240.1, ISNI 0000 0004 1763 0578, Dipartimento di Scienze Molecolari e Nanosistemi, , Universitá Ca’ Foscari Venezia, ; Venezia-Mestre, Italy
                [2 ]GRID grid.7240.1, ISNI 0000 0004 1763 0578, Dipartimento di Scienze Ambientali, Informatica e Statistica, , Universitá Ca’ Foscari Venezia, ; Venezia-Mestre, Italy
                [3 ]GRID grid.5333.6, ISNI 0000000121839049, Laboratory of Statistical Biophysics, Institute of Physics, School of Basic Sciences, , Ècole Polytechnique Fèdèrale de Lausanne (EPFL), ; Lausanne, Switzerland
                [4 ]GRID grid.417894.7, ISNI 0000 0001 0707 5492, Neuroalgology Unit, , Fondazione IRCCS Istituto Neurologico “Carlo Besta”, ; Milan, Italy
                [5 ]GRID grid.281208.1, ISNI 0000 0004 0419 3073, Center for Neuroscience and Regeneration Research, , VA Connecticut Healthcare System and Yale Medical School, ; West Haven, USA
                [6 ]GRID grid.5012.6, ISNI 0000 0001 0481 6099, MHeNs school for Mental Health and Neuroscience, , Maastricht University, ; Maastricht, The Netherlands
                [7 ]GRID grid.412966.e, ISNI 0000 0004 0480 1382, Department of Neurology, , Maastricht University Medical Center, ; Maastricht, The Netherlands
                [8 ]GRID grid.4708.b, ISNI 0000 0004 1757 2822, Department of Biomedical and Clinical Sciences “Luigi Sacco”, , University of Milan, ; Milan, Italy
                [9 ]GRID grid.500395.a, European Centre for Living Technology (ECLT), ; Venice, Italy
                Article
                74591
                10.1038/s41598-020-74591-y
                7578092
                33087732
                86e7861b-e5c6-4dd3-b353-1151def3ec1f
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 15 June 2020
                : 30 September 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100003407, Ministero dell'istruzione dell'università e della ricerca;
                Award ID: 2017Z55KCW
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                neuroscience,computational neuroscience,learning algorithms,network models,neuropathic pain

                Comments

                Comment on this article