8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitination by USP22

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Emerging evidences have shown that GSK3β plays oncogenic roles in multiple tumor types; however, the underlying mechanisms remain largely unknown. Herein, we show that nuclear GSK3β is responsible for the accumulation of the histone demethylase KDM1A and critically regulates histone H3K4 methylation during tumorigenesis. GSK3β phosphorylates KDM1A serine 683 upon priming phosphorylation of KDM1A serine 687 by CK1α. Phosphorylation of KDM1A induces its binding with and deubiquitination by USP22, leading to KDM1A stabilization. GSK3β and USP22-dependent KDM1A stabilization is required for the demethylation of histone H3K4, thereby repression of BMP2, CDKN1A, and GATA6 transcription, cancer stem cell self-renewal, and glioblastoma tumorigenesis. In human glioblastoma specimens, KDM1A levels are correlated with nuclear GSK3β and USP22 levels. Furthermore, a GSK3 inhibitor tideglusib sensitizes tumor xenograft to chemotherapy in mice via KDM1A down-regulation and improves survival. Our findings demonstrate that nuclear GSK3β and USP22-mediated KDM1A stabilization is essential for glioblastoma tumorigenesis.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          A restricted cell population propagates glioblastoma growth following chemotherapy

          Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor, with a median survival of about one year 1 . This poor prognosis is due to therapeutic resistance and tumor recurrence following surgical removal. Precisely how recurrence occurs is unknown. Using a genetically-engineered mouse model of glioma, we identify a subset of endogenous tumor cells that are the source of new tumor cells after the drug, temozolomide (TMZ), is administered to transiently arrest tumor growth. A Nestin-ΔTK-IRES-GFP (Nes-ΔTK-GFP) transgene that labels quiescent subventricular zone adult neural stem cells also labels a subset of endogenous glioma tumor cells. Upon arrest of tumor cell proliferation with TMZ, pulse-chase experiments demonstrate a tumor re-growth cell hierarchy originating with the Nes-ΔTK-GFP transgene subpopulation. Ablation of the GFP+ cells with chronic ganciclovir administration significantly arrested tumor growth and combined TMZ-ganciclovir treatment impeded tumor development. These data indicate the existence of a relatively quiescent subset of endogenous glioma cells that are responsible for sustaining long-term tumor growth through the production of transient populations of highly proliferative cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells.

            Developmental fate decisions are dictated by master transcription factors (TFs) that interact with cis-regulatory elements to direct transcriptional programs. Certain malignant tumors may also depend on cellular hierarchies reminiscent of normal development but superimposed on underlying genetic aberrations. In glioblastoma (GBM), a subset of stem-like tumor-propagating cells (TPCs) appears to drive tumor progression and underlie therapeutic resistance yet remain poorly understood. Here, we identify a core set of neurodevelopmental TFs (POU3F2, SOX2, SALL2, and OLIG2) essential for GBM propagation. These TFs coordinately bind and activate TPC-specific regulatory elements and are sufficient to fully reprogram differentiated GBM cells to "induced" TPCs, recapitulating the epigenetic landscape and phenotype of native TPCs. We reconstruct a network model that highlights critical interactions and identifies candidate therapeutic targets for eliminating TPCs. Our study establishes the epigenetic basis of a developmental hierarchy in GBM, provides detailed insight into underlying gene regulatory programs, and suggests attendant therapeutic strategies. PAPERCLIP: Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The renaissance of GSK3.

              Glycogen synthase kinase 3 (GSK3) was initially described as a key enzyme involved in glycogen metabolism, but is now known to regulate a diverse array of cell functions. The study of the substrate specificity and regulation of GSK3 activity has been important in the quest for therapeutic intervention.
                Bookmark

                Author and article information

                Journal
                100890575
                21417
                Nat Cell Biol
                Nat. Cell Biol.
                Nature cell biology
                1465-7392
                1476-4679
                13 July 2016
                08 August 2016
                September 2016
                01 March 2017
                : 18
                : 9
                : 954-966
                Affiliations
                [1 ]Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
                [2 ]Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
                [3 ]Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
                [4 ]Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
                [5 ]Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
                [7 ]Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
                Author notes
                [9 ]Correspondence should be to address to S.H. ( suhuang@ 123456mdanderson.org )
                [6]

                Current address: MacFeeters-Hamilton Brain Tumour Centre, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada

                Article
                NIHMS801584
                10.1038/ncb3396
                5026327
                27501329
                876dd0eb-f4f8-45e0-8f13-f253b1f4d809

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article