20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Probing the relationship between Gram-negative and Gram-positive S1 proteins by sequence analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Escherichia coli ribosomal protein S1 is required for the translation initiation of messenger RNAs, in particular when their Shine–Dalgarno sequence is degenerated. Closely related forms of the protein, composed of the same number of domains (six), are found in all Gram-negative bacteria. More distant proteins, generally formed of fewer domains, have been identified, by sequence similarities, in Gram-positive bacteria and are also termed ‘S1 proteins’. However in the absence of functional information, it is generally difficult to ascertain their relationship with Gram-negative S1. In this article, we report the solution structure of the fourth and sixth domains of the E. coli protein S1 and show that it is possible to characterize their β-barrel by a consensus sequence that allows a precise identification of all domains in Gram-negative and Gram-positive S1 proteins. In addition, we show that it is possible to discriminate between five domain types corresponding to the domains 1, 2, 3, 4–5 and 6 of E. coli S1 on the basis of their sequence. This enabled us to identify the nature of the domains present in Gram-positive proteins and, subsequently, to probe the filiations between all forms of S1.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Profile hidden Markov models.

          S. Eddy (1998)
          The recent literature on profile hidden Markov model (profile HMM) methods and software is reviewed. Profile HMMs turn a multiple sequence alignment into a position-specific scoring system suitable for searching databases for remotely homologous sequences. Profile HMM analyses complement standard pairwise comparison methods for large-scale sequence analysis. Several software implementations and two large libraries of profile HMMs of common protein domains are available. HMM methods performed comparably to threading methods in the CASP2 structure prediction exercise.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein backbone angle restraints from searching a database for chemical shift and sequence homology.

            Chemical shifts of backbone atoms in proteins are exquisitely sensitive to local conformation, and homologous proteins show quite similar patterns of secondary chemical shifts. The inverse of this relation is used to search a database for triplets of adjacent residues with secondary chemical shifts and sequence similarity which provide the best match to the query triplet of interest. The database contains 13C alpha, 13C beta, 13C', 1H alpha and 15N chemical shifts for 20 proteins for which a high resolution X-ray structure is available. The computer program TALOS was developed to search this database for strings of residues with chemical shift and residue type homology. The relative importance of the weighting factors attached to the secondary chemical shifts of the five types of resonances relative to that of sequence similarity was optimized empirically. TALOS yields the 10 triplets which have the closest similarity in secondary chemical shift and amino acid sequence to those of the query sequence. If the central residues in these 10 triplets exhibit similar phi and psi backbone angles, their averages can reliably be used as angular restraints for the protein whose structure is being studied. Tests carried out for proteins of known structure indicate that the root-mean-square difference (rmsd) between the output of TALOS and the X-ray derived backbone angles is about 15 degrees. Approximately 3% of the predictions made by TALOS are found to be in error.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold.

              The S1 domain, originally identified in ribosomal protein S1, is found in a large number of RNA-associated proteins. The structure of the S1 RNA-binding domain from the E. coli polynucleotide phosphorylase has been determined using NMR methods and consists of a five-stranded antiparallel beta barrel. Conserved residues on one face of the barrel and adjacent loops form the putative RNA-binding site. The structure of the S1 domain is very similar to that of cold shock protein, suggesting that they are both derived from an ancient nucleic acid-binding protein. Enhanced sequence searches reveal hitherto unidentified S1 domains in RNase E, RNase II, NusA, EMB-5, and other proteins.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                September 2009
                September 2009
                15 July 2009
                15 July 2009
                : 37
                : 16
                : 5578-5588
                Affiliations
                1CNRS, Centre de Recherche CNRS de Gif-sur-Yvette (FRC 3115), Institut de Chimie des Substances Naturelles, avenue de la terrasse, 91198 Gif-sur-Yvette Cedex, 2Université Paris 6-Pierre et Marie Curie, 4 place Jussieu, 75252 Paris cedex 05, 3CNRS, FRE3207 Acides Nucléiques et Biophotonique, 4 place Jussieu, 75251 Paris cedex 05, France and 4Department of Biology, University of Padova, via U. Bassi 58/B 35121 Padova, Italia
                Author notes
                *To whom correspondence should be addressed. Tel: +(33) 1 69 82 36 78; Email: francois.bontems@ 123456icsn.cnrs-gif.fr
                Article
                gkp547
                10.1093/nar/gkp547
                2760812
                19605565
                894ccdf6-3610-42b5-a3fe-f71c7a4bb4fd
                © 2009 The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 April 2009
                : 19 May 2009
                : 10 June 2009
                Categories
                Structural Biology

                Genetics
                Genetics

                Comments

                Comment on this article