20
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Phosphorylation and regulation of a G protein–coupled receptor by protein kinase CK2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We demonstrate a role for protein kinase casein kinase 2 (CK2) in the phosphorylation and regulation of the M 3-muscarinic receptor in transfected cells and cerebellar granule neurons. On agonist occupation, specific subsets of receptor phosphoacceptor sites (which include the SASSDEED motif in the third intracellular loop) are phosphorylated by CK2. Receptor phosphorylation mediated by CK2 specifically regulates receptor coupling to the Jun-kinase pathway. Importantly, other phosphorylation-dependent receptor processes are regulated by kinases distinct from CK2. We conclude that G protein–coupled receptors (GPCRs) can be phosphorylated in an agonist-dependent fashion by protein kinases from a diverse range of kinase families, not just the GPCR kinases, and that receptor phosphorylation by a defined kinase determines a specific signalling outcome. Furthermore, we demonstrate that the M 3-muscarinic receptor can be differentially phosphorylated in different cell types, indicating that phosphorylation is a flexible regulatory process where the sites that are phosphorylated, and hence the signalling outcome, are dependent on the cell type in which the receptor is expressed.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          One-thousand-and-one substrates of protein kinase CK2?

          CK2 (formerly termed "casein kinase 2") is a ubiquitous, highly pleiotropic and constitutively active Ser/Thr protein kinase whose implication in neoplasia, cell survival, and virus infection is supported by an increasing number of arguments. Here an updated inventory of 307 CK2 protein substrates is presented. More than one-third of these are implicated in gene expression and protein synthesis as being either transcriptional factors (60) or effectors of DNA/RNA structure (50) or translational elements. Also numerous are signaling proteins and proteins of viral origin or essential to virus life cycle. In comparison, only a minority of CK2 targets (a dozen or so) are classical metabolic enzymes. An analysis of 308 sites phosphorylated by CK2 highlights the paramount relevance of negatively charged side chains that are (by far) predominant over any other residues at positions n+3 (the most crucial one), n+1, and n+2. Based on this signature, it is predictable that proteins phosphorylated by CK2 are much more numerous than those identified to date, and it is possible that CK2 alone contributes to the generation of the eukaryotic phosphoproteome more so than any other individual protein kinase. The possibility that CK2 phosphosites play some global role, e.g., by destabilizing alpha helices, counteracting caspase cleavage, and generating adhesive motifs, will be discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mammalian G proteins and their cell type specific functions.

            Heterotrimeric G proteins are key players in transmembrane signaling by coupling a huge variety of receptors to channel proteins, enzymes, and other effector molecules. Multiple subforms of G proteins together with receptors, effectors, and various regulatory proteins represent the components of a highly versatile signal transduction system. G protein-mediated signaling is employed by virtually all cells in the mammalian organism and is centrally involved in diverse physiological functions such as perception of sensory information, modulation of synaptic transmission, hormone release and actions, regulation of cell contraction and migration, or cell growth and differentiation. In this review, some of the functions of heterotrimeric G proteins in defined cells and tissues are described.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The G protein-coupled receptor repertoires of human and mouse.

              Diverse members of the G protein-coupled receptor (GPCR) superfamily participate in a variety of physiological functions and are major targets of pharmaceutical drugs. Here we report that the repertoire of GPCRs for endogenous ligands consists of 367 receptors in humans and 392 in mice. Included here are 26 human and 83 mouse GPCRs not previously identified. A direct comparison of GPCRs in the two species reveals an unexpected level of orthology. The evolutionary preservation of these molecules argues against functional redundancy among highly related receptors. Phylogenetic analyses cluster 60% of GPCRs according to ligand preference, allowing prediction of ligand types for dozens of orphan receptors. Expression profiling of 100 GPCRs demonstrates that most are expressed in multiple tissues and that individual tissues express multiple GPCRs. Over 90% of GPCRs are expressed in the brain. Strikingly, however, the profiles of most GPCRs are unique, yielding thousands of tissue- and cell-specific receptor combinations for the modulation of physiological processes.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                9 April 2007
                : 177
                : 1
                : 127-137
                Affiliations
                [1 ]Department of Cell Physiology and Pharmacology and [2 ]Protein and Nucleic Acid Chemistry Laboratory, University of Leicester, Leicester LE1 9HN, England, UK
                [3 ]Merck KgaA, Oncology Research Darmstadt, Global Preclinical Research and Development, D-64293 Darmstadt, Germany
                Author notes

                Correspondence to Andrew B. Tobin: tba@ 123456le.ac.uk

                Article
                200610018
                10.1083/jcb.200610018
                2064117
                17403928
                8d1b134f-13c8-4ad3-a63c-c44381e6b8fa
                Copyright © 2007, The Rockefeller University Press
                History
                : 4 October 2006
                : 6 March 2007
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article