28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of the retinal gene expression profile after hypoxic preconditioning identifies candidate genes for neuroprotection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Retinal degeneration is a main cause of blindness in humans. Neuroprotective therapies may be used to rescue retinal cells and preserve vision. Hypoxic preconditioning stabilizes the transcription factor HIF-1α in the retina and strongly protects photoreceptors in an animal model of light-induced retinal degeneration. To address the molecular mechanisms of the protection, we analyzed the transcriptome of the hypoxic retina using microarrays and real-time PCR.

          Results

          Hypoxic exposure induced a marked alteration in the retinal transcriptome with significantly different expression levels of 431 genes immediately after hypoxic exposure. The normal expression profile was restored within 16 hours of reoxygenation. Among the differentially regulated genes, several candidates for neuroprotection were identified like metallothionein-1 and -2, the HIF-1 target gene adrenomedullin and the gene encoding the antioxidative and cytoprotective enzyme paraoxonase 1 which was previously not known to be a hypoxia responsive gene in the retina. The strongly upregulated cyclin dependent kinase inhibitor p21 was excluded from being essential for neuroprotection.

          Conclusion

          Our data suggest that neuroprotection after hypoxic preconditioning is the result of the differential expression of a multitude of genes which may act in concert to protect visual cells against a toxic insult.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          HIF-1: mediator of physiological and pathophysiological responses to hypoxia.

          All organisms can sense O(2) concentration and respond to hypoxia with adaptive changes in gene expression. The large body size of mammals necessitates the development of multiple complex physiological systems to ensure adequate O(2) delivery to all cells under normal conditions. The transcriptional regulator hypoxia-inducible factor 1 (HIF-1) is an essential mediator of O(2) homeostasis. HIF-1 is required for the establishment of key physiological systems during development and their subsequent utilization in fetal and postnatal life. HIF-1 also appears to play a key role in the pathophysiology of cancer, cardiovascular disease, and chronic lung disease, which represent the major causes of mortality among industrialized societies. Genetic or pharmacological modulation of HIF-1 activity in vivo may represent a novel therapeutic approach to these disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HIF-1alpha induces cell cycle arrest by functionally counteracting Myc.

            Hypoxia induces angiogenesis and glycolysis for cell growth and survival, and also leads to growth arrest and apoptosis. HIF-1alpha, a basic helix-loop-helix PAS transcription factor, acts as a master regulator of oxygen homeostasis by upregulating various genes under low oxygen tension. Although genetic studies have indicated the requirement of HIF-1alpha for hypoxia-induced growth arrest and activation of p21(cip1), a key cyclin-dependent kinase inhibitor controlling cell cycle checkpoint, the mechanism underlying p21(cip1) activation has been elusive. Here we demonstrate that HIF-1alpha, even in the absence of hypoxic signal, induces cell cycle arrest by functionally counteracting Myc, thereby derepressing p21(cip1). The HIF-1alpha antagonism is mediated by displacing Myc binding from p21(cip1) promoter. Neither HIF-1alpha transcriptional activity nor its DNA binding is essential for cell cycle arrest, indicating a divergent role for HIF-1alpha. In keeping with its antagonism of Myc, HIF-1alpha also downregulates Myc-activated genes such as hTERT and BRCA1. Hence, we propose that Myc is an integral part of a novel HIF-1alpha pathway, which regulates a distinct group of Myc target genes in response to hypoxia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration.

              Human retinal dystrophies and degenerations and light-induced retinal degenerations in animal models are sharing an important feature: visual cell death by apoptosis. Studying apoptosis may thus provide an important handle to understand mechanisms of cell death and to develop potential rescue strategies for blinding retinal diseases. Apoptosis is the regulated elimination of individual cells and constitutes an almost universal principle in developmental histogenesis and organogenesis and in the maintenance of tissue homeostasis in mature organs. Here we present an overview on molecular and cellular mechanisms of apoptosis and summarize recent developments. The classical concept of apoptosis being initiated and executed by endopeptidases that cleave proteins at aspartate residues (Caspases) can no longer be held in its strict sense. There is an increasing number of caspase-independent pathways, involving apoptosis inducing factor, endonuclease G, poly-(ADP-ribose) polymerase-1, proteasomes, lysosomes and others. Similarly, a considerable number and diversity of pro-apoptotic stimuli is being explored. We focus on apoptosis pathways in our model: light-damage induced by short exposures to bright white light and highlight those essential conditions known so far in the apoptotic death cascade. In our model, the visual pigment rhodopsin is the essential mediator of the initial death signal. The rate of rhodopsin regeneration defines damage threshold in different strains of mice. This rate depends on the level of the pigment epithelial protein RPE65, which in turn depends on the amino acid (leucine or methionine) encoded at position 450. Activation of the pro-apoptotic transcription factor AP-1 constitutes an essential death signal. Inhibition of rhodopsin regeneration as well as suppression of AP-1 confers complete protection in our system. Furthermore, we describe observations in other light-damage systems as well as characteristics of animal models for RP with particular emphasis on rescue strategies. There is a vast array of different neuroprotective cytokines that are applied in light-damage and RP animal models and show diverging efficacy. Some cytokines protect against light damage as well as against RP in animal models. At present, the mechanisms of neuroprotective/anti-apoptotic action represent a "black box" which needs to be explored. Even though acute light damage and RP animal models show different characteristics in many respects, we hope to gain insights into apoptotic mechanisms for both conditions by studying light damage and comparing results with those obtained in animal models. In our view, future directions may include the investigation of different apoptotic pathways in light damage (and inherited animal models). Emphasis should also be placed on mechanisms of removal of dead cells in apoptosis, which appears to be more important than initially recognized. In this context, a stimulating concept concerns age-related macular degeneration, where an insufficiency of macrophages removing debris that results from cell death and photoreceptor turnover might be an important pathogenetic event. In acute light damage, the appearance of macrophages as well as phagocytosis by the retinal pigment epithelium are a consistent and conspicuous feature, which lends itself to the study of removal of cellular debris in apoptosis. We are aware of the many excellent reviews and the earlier work paving the way to our current knowledge and understanding of retinal degeneration, photoreceptor apoptosis and neuroprotection. However, we limited this review mainly to work published in the last 7-8 years and we apologize to all the researchers which have contributed to the field but are not cited here.
                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2008
                8 February 2008
                : 9
                : 73
                Affiliations
                [1 ]Lab of Retinal Cell Biology, Dept Ophthalmology, University of Zurich, Switzerland
                [2 ]Laboratoire de BioInformatique et Génomique Intégrative, Institut de Genetique et de Biologie Moleculaire et Cellulaire, 67404 Illkirch, France
                Article
                1471-2164-9-73
                10.1186/1471-2164-9-73
                2270833
                18261226
                8e8371e9-8266-42a3-9094-1cf793358818
                Copyright © 2008 Thiersch et al;

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 October 2007
                : 8 February 2008
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article