29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How to Fool Radiologists with Generative Adversarial Networks? A Visual Turing Test for Lung Cancer Diagnosis

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Discriminating lung nodules as malignant or benign is still an underlying challenge. Due to this challenge, radiologists need computer aided diagnosis (CAD) systems to assist in learning discriminative imaging features corresponding to malignant and benign nodules. However, learning highly discriminative imaging features is an open problem. In this paper, our aim is to learn the most discriminative features pertaining to lung nodules by using an adversarial learning methodology. Specifically, we propose to use unsupervised learning with Deep Convolutional-Generative Adversarial Networks (DC-GANs) to generate lung nodule samples realistically. We hypothesize that imaging features of lung nodules will be discriminative if it is hard to differentiate them (fake) from real (true) nodules. To test this hypothesis, we present Visual Turing tests to two radiologists in order to evaluate the quality of the generated (fake) nodules. Extensive comparisons are performed in discerning real, generated, benign, and malignant nodules. This experimental set up allows us to validate the overall quality of the generated nodules, which can then be used to (1) improve diagnostic decisions through highly discriminative imaging features, (2) train radiologists for educational purposes, and (3) generate realistic samples to train deep networks with big data.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: not found
          • Book Chapter: not found

          Unsupervised Domain Adaptation in Brain Lesion Segmentation with Adversarial Networks

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery

            Obtaining models that capture imaging markers relevant for disease progression and treatment monitoring is challenging. Models are typically based on large amounts of data with annotated examples of known markers aiming at automating detection. High annotation effort and the limitation to a vocabulary of known markers limit the power of such approaches. Here, we perform unsupervised learning to identify anomalies in imaging data as candidates for markers. We propose AnoGAN, a deep convolutional generative adversarial network to learn a manifold of normal anatomical variability, accompanying a novel anomaly scoring scheme based on the mapping from image space to a latent space. Applied to new data, the model labels anomalies, and scores image patches indicating their fit into the learned distribution. Results on optical coherence tomography images of the retina demonstrate that the approach correctly identifies anomalous images, such as images containing retinal fluid or hyperreflective foci.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Risk Stratification of Lung Nodules Using 3D CNN-Based Multi-task Learning

              Risk stratification of lung nodules is a task of primary importance in lung cancer diagnosis. Any improvement in robust and accurate nodule characterization can assist in identifying cancer stage, prognosis, and improving treatment planning. In this study, we propose a 3D Convolutional Neural Network (CNN) based nodule characterization strategy. With a completely 3D approach, we utilize the volumetric information from a CT scan which would be otherwise lost in the conventional 2D CNN based approaches. In order to address the need for a large amount for training data for CNN, we resort to transfer learning to obtain highly discriminative features. Moreover, we also acquire the task dependent feature representation for six high-level nodule attributes and fuse this complementary information via a Multi-task learning (MTL) framework. Finally, we propose to incorporate potential disagreement among radiologists while scoring different nodule attributes in a graph regularized sparse multi-task learning. We evaluated our proposed approach on one of the largest publicly available lung nodule datasets comprising 1018 scans and obtained state-of-the-art results in regressing the malignancy scores.
                Bookmark

                Author and article information

                Journal
                26 October 2017
                Article
                1710.09762
                92891f80-448b-4934-83ae-5a1f5c2a45be

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Submitted to International Symposium on Biomedical Imaging (ISBI) 2018
                cs.CV cs.LG q-bio.QM

                Comments

                Comment on this article