14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      F-Prostaglandin receptor regulates endothelial cell function via fibroblast growth factor-2

      research-article
      1 , 1 , 1 , , 1
      BMC Cell Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Prostaglandin (PG) F is a key regulator of endometrial function and exerts its biological action after coupling with its heptahelical G protein-coupled receptor (FP receptor). In endometrial adenocarcinoma the FP receptor expression is elevated. We have shown previously that PGF -FP receptor signalling in endometrial adenocarcinoma cells can upregulate several angiogenic factors including fibroblast growth factor-2 (FGF2). In the present study, we investigated the paracrine effect of conditioned medium produced via PGF -FP receptor signalling in endometrial adenocarcinoma cells stably expressing the FP receptor (Ishikawa FPS cells), on endothelial cell function.

          Results

          Conditioned medium (CM) was collected from FPS cells after 24 hrs treatment with either vehicle (V CM) or 100 nM PGF (P CM). Treatment of human umbilical vein endothelial cells (HUVECs) with P CM significantly enhanced endothelial cell differentiation (network formation) and proliferation. Using chemical inhibitors of intracellular signalling, we found that P CM-stimulated endothelial cell network formation was mediated by secretion of endothelial PGF and activation of endothelial FP receptors, following FGF2-FGFR1 signalling, phosphorylation of ERK1/2 and induction of COX-2. Whereas, P CM stimulation of endothelial cell proliferation occurred independently of PGF secretion via an FGF2-FGFR1-ERK1/2 dependent mechanism involving activation of the mTOR pathway.

          Conclusions

          Taken together, we have shown a novel mechanism whereby epithelial prostaglandin F -FP signalling regulates endothelial cell network formation and proliferation. In addition we provide novel in vitro evidence to suggest that prostaglandin F can directly regulate endothelial cell network formation but not endothelial cell proliferation. These findings have relevance for pathologies where the FP receptor is aberrantly expressed, such as endometrial adenocarcinoma, and provide in vitro evidence to suggest that targeting the FP receptor could provide an anti-angiogenic approach to reducing tumour vasculature and growth.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer Statistics, 2008

          Each year, the American Cancer Society estimates the number of new cancer cases and deaths expected in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival based on incidence data from the National Cancer Institute, Centers for Disease Control and Prevention, and the North American Association of Central Cancer Registries and mortality data from the National Center for Health Statistics. Incidence and death rates are age-standardized to the 2000 US standard million population. A total of 1,437,180 new cancer cases and 565,650 deaths from cancer are projected to occur in the United States in 2008. Notable trends in cancer incidence and mortality include stabilization of incidence rates for all cancer sites combined in men from 1995 through 2004 and in women from 1999 through 2004 and a continued decrease in the cancer death rate since 1990 in men and since 1991 in women. Overall cancer death rates in 2004 compared with 1990 in men and 1991 in women decreased by 18.4% and 10.5%, respectively, resulting in the avoidance of over a half million deaths from cancer during this time interval. This report also examines cancer incidence, mortality, and survival by site, sex, race/ethnicity, education, geographic area, and calendar year, as well as the proportionate contribution of selected sites to the overall trends. Although much progress has been made in reducing mortality rates, stabilizing incidence rates, and improving survival, cancer still accounts for more deaths than heart disease in persons under age 85 years. Further progress can be accelerated by supporting new discoveries and by applying existing cancer control knowledge across all segments of the population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Angiogenesis in vitro.

            Cloned capillary endothelial cells, cultured in tumour-conditioned medium, form capillary tubes. By light and electron microscopy these tubes resemble capillaries in vivo. This first demonstration of angiogenesis in vitro: (1) shows that all the information necessary to develop an entire capillary network in vitro is expressed by one cell type; (2) suggests a mechanism for lumen formation; and (3) offers a possibility of distinguishing between direct and indirect angiogenesis factors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer

              Chronic inflammation is a well-known risk factor for cancer. Proinflammatory mediators such as prostaglandin E2 (PGE2) promote colorectal tumor growth by stimulating angiogenesis, cell invasion, and cell growth, and inhibiting apoptosis. Molecules that regulate tumor-associated angiogenesis provide promising therapeutic targets for treatment of colorectal cancer (CRC) as indicated by the recent development of the novel anti-angiogenic agent bevacizumab (Avastin). However, use of this drug only prolongs survival by several months, highlighting the importance of finding more effective treatment regimens. We report here that PGE2 induces expression of CXCL1 (growth-regulated oncogene α), a pro-angiogenic chemokine, in human CRC cells. More importantly, CXCL1 released from carcinoma cells induces microvascular endothelial cell migration and tube formation in vitro. Furthermore, PGE2 promotes tumor growth in vivo by induction of CXCL1 expression, which results in increased tumor microvessel formation. These results have potential clinical significance because we found that CXCL1 expression correlates with PGE2 levels in human CRCs. Collectively, our findings show for the first time that CXCL1 is regulated by PGE2 and indicate that CXCL1 inhibitors should be evaluated further as potential anti-angiogenic agents for treatment of CRC.
                Bookmark

                Author and article information

                Journal
                BMC Cell Biol
                BMC Cell Biology
                BioMed Central
                1471-2121
                2010
                21 January 2010
                : 11
                : 8
                Affiliations
                [1 ]MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
                Article
                1471-2121-11-8
                10.1186/1471-2121-11-8
                2824741
                20092633
                9872d53e-5a8a-4749-b81e-16905aeda164
                Copyright ©2010 Keightley et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 August 2009
                : 21 January 2010
                Categories
                Research article

                Cell biology
                Cell biology

                Comments

                Comment on this article