23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Systematic Analysis of the Role of RNA-Binding Proteins in the Regulation of RNA Stability

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          mRNA half-lives are transcript-specific and vary over a range of more than 100-fold in eukaryotic cells. mRNA stabilities can be regulated by sequence-specific RNA-binding proteins (RBPs), which bind to regulatory sequence elements and modulate the interaction of the mRNA with the cellular RNA degradation machinery. However, it is unclear if this kind of regulation is sufficient to explain the large range of mRNA stabilities. To address this question, we examined the transcriptome of 74 Schizosaccharomyces pombe strains carrying deletions in non-essential genes encoding predicted RBPs (86% of all such genes). We identified 25 strains that displayed changes in the levels of between 4 and 104 mRNAs. The putative targets of these RBPs formed biologically coherent groups, defining regulons involved in cell separation, ribosome biogenesis, meiotic progression, stress responses and mitochondrial function. Moreover, mRNAs in these groups were enriched in specific sequence motifs in their coding sequences and untranslated regions, suggesting that they are coregulated at the posttranscriptional level. We performed genome-wide RNA stability measurements for several RBP mutants, and confirmed that the altered mRNA levels were caused by changes in their stabilities. Although RBPs regulate the decay rates of multiple regulons, only 16% of all S. pombe mRNAs were affected in any of the 74 deletion strains. This suggests that other players or mechanisms are required to generate the observed range of RNA half-lives of a eukaryotic transcriptome.

          Author Summary

          Messenger RNAs (mRNAs) are the molecules that relay the information from genes (DNA) to proteins. Cells contain different amounts of each mRNA type depending on their function and their situation. The quantity of each mRNA depends on the balance between its production (transcription) and its degradation (mRNA decay). Recent studies have shown that the rate at which each mRNA is degraded is specific for every gene, but little is known about how this is regulated. In this work, we look at the role of a class of proteins that bind to RNA molecules (RNA-binding proteins, or RBPs) in the regulation of RNA decay. By systematically examining cells in which a single RBP has been inactivated we identify those that are important for RNA degradation. We found RBPs that make mRNAs more stable (that is, they are degraded more slowly) and others that make them unstable. These RBPs control the RNAs of genes with common features, suggesting that they provide a way of coordinating the function of groups of genes. However, for many genes we did not find RBPs that control their stability, indicating that other players are important to regulate RNA degradation.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          RNA regulons: coordination of post-transcriptional events.

          Jack Keene (2007)
          Recent findings demonstrate that multiple mRNAs are co-regulated by one or more sequence-specific RNA-binding proteins that orchestrate their splicing, export, stability, localization and translation. These and other observations have given rise to a model in which mRNAs that encode functionally related proteins are coordinately regulated during cell growth and differentiation as post-transcriptional RNA operons or regulons, through a ribonucleoprotein-driven mechanism. Here I describe several recently discovered examples of RNA operons in budding yeast, fruitfly and mammalian cells, and their potential importance in processes such as immune response, oxidative metabolism, stress response, circadian rhythms and disease. I close by considering the evolutionary wiring and rewiring of these combinatorial post-transcriptional gene-expression networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Precision and functional specificity in mRNA decay.

            Posttranscriptional processing of mRNA is an integral component of the gene expression program. By using DNA microarrays, we precisely measured the decay of each yeast mRNA, after thermal inactivation of a temperature-sensitive RNA polymerase II. The half-lives varied widely, ranging from approximately 3 min to more than 90 min. We found no simple correlation between mRNA half-lives and ORF size, codon bias, ribosome density, or abundance. However, the decay rates of mRNAs encoding groups of proteins that act together in stoichiometric complexes were generally closely matched, and other evidence pointed to a more general relationship between physiological function and mRNA turnover rates. The results provide strong evidence that precise control of the decay of each mRNA is a fundamental feature of the gene expression program in yeast.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global transcriptional responses of fission yeast to environmental stress.

              We explored transcriptional responses of the fission yeast Schizosaccharomyces pombe to various environmental stresses. DNA microarrays were used to characterize changes in expression profiles of all known and predicted genes in response to five stress conditions: oxidative stress caused by hydrogen peroxide, heavy metal stress caused by cadmium, heat shock caused by temperature increase to 39 degrees C, osmotic stress caused by sorbitol, and DNA damage caused by the alkylating agent methylmethane sulfonate. We define a core environmental stress response (CESR) common to all, or most, stresses. There was a substantial overlap between CESR genes of fission yeast and the genes of budding yeast that are stereotypically regulated during stress. CESR genes were controlled primarily by the stress-activated mitogen-activated protein kinase Sty1p and the transcription factor Atf1p. S. pombe also activated gene expression programs more specialized for a given stress or a subset of stresses. In general, these "stress-specific" responses were less dependent on the Sty1p mitogen-activated protein kinase pathway and may involve specific regulatory factors. Promoter motifs associated with some of the groups of coregulated genes were identified. We compare and contrast global regulation of stress genes in fission and budding yeasts and discuss evolutionary implications.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                November 2014
                6 November 2014
                : 10
                : 11
                : e1004684
                Affiliations
                [1]Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
                The University of North Carolina at Chapel Hill, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JM. Performed the experiments: AH CC CDSD. Analyzed the data: JM AH CC CDSD. Wrote the paper: JM.

                Article
                PGENETICS-D-14-00852
                10.1371/journal.pgen.1004684
                4222612
                25375137
                99437528-eaa6-470d-bfa8-24da52217e62
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 March 2014
                : 18 August 2014
                Page count
                Pages: 15
                Funding
                This work was supported by a Biotechnology and Biological Sciences Research Council grant BB/J007153/1 to JM ( http://www.bbsrc.ac.uk), a Masdar Institute fellowship to AH ( http://www.masdar.ac.ae/) and a Herchel Smith Postdoctoral fellowship to CC ( http://www.herchelsmith.cam.ac.uk). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Biochemistry
                Proteins
                RNA-binding proteins
                RNA
                RNA stability
                Computational Biology
                Gene Regulatory Networks
                Genetics
                Molecular Genetics
                Organisms
                Fungi
                Yeast
                Schizosaccharomyces
                Schizosaccharomyces Pombe
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All microarray and sequencing data have been deposited in ArrayExpress with accession numbers E-MTAB-2314 (microarray expression experiments), E-MTAB-2317, E-MTAB-2318 and E-MTAB-2712 (stability data), E-MTAB-2709 (RIp-chip experiments) and RNA-seq of splicing mutants (E-MTAB-2695).

                Genetics
                Genetics

                Comments

                Comment on this article