36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studying renal microcirculation and its dynamics is of great importance for understanding the renal function and further aiding the diagnosis, prevention and treatment of renal pathologies. In this paper, we present a potentially useful method to provide high-sensitive volumetric imaging of renal microcirculations using ultrahigh-sensitive optical microangiography (UHS-OMAG). The UHS-OMAG image system used here is based on spectral domain optical coherence tomography, which uses a broadband light source centered at 1300 nm with an imaging speed of 150 frames per second that requires ~6.7 sec to complete one 3D scan of ~2.5 × 2.5 mm 2 area. The technique is sensitive enough to image capillary networks, such as peritubular capillaries within renal cortex. We show the ability of UHS-OMAG to provide depth-resolved volumetric images of capillary level renal microcirculation. We also show that UHS-OMAG is capable of monitoring the changes of renal microcirculation in response to renal ischemia and reperfusion. Finally, we attempt to show the capability of OMAG to provide quantitative analysis about velocity changes in a single capillary vessel (down to tens of microns per second) in response to the ischemic event.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Optical coherence tomography.

          A technique called optical coherence tomography (OCT) has been developed for noninvasive cross-sectional imaging in biological systems. OCT uses low-coherence interferometry to produce a two-dimensional image of optical scattering from internal tissue microstructures in a way that is analogous to ultrasonic pulse-echo imaging. OCT has longitudinal and lateral spatial resolutions of a few micrometers and can detect reflected signals as small as approximately 10(-10) of the incident optical power. Tomographic imaging is demonstrated in vitro in the peripapillary area of the retina and in the coronary artery, two clinically relevant examples that are representative of transparent and turbid media, respectively.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Three dimensional optical angiography.

            With existing optical imaging techniques three-dimensional (3-D) mapping of microvascular perfusion within tissue beds is severely limited by the efficient scattering and absorption of light by tissue. To overcome these limitations we have developed a method of optical angiography (OAG) that can generate 3-D angiograms within millimeter tissue depths by analyzing the endogenous optical scattering signal from an illuminated sample. The technique effectively separates the moving and static scattering elements within tissue to achieve high resolution images of blood flow, mapped into the 3-D optically sectioned tissue beds, at speeds that allow for perfusion assessment in vivo. Its development has its origin in Fourier domain optical coherence tomography. We used OAG to visualize the cerebral microcirculation, of adult living mice through the intact cranium, measurements which would be difficult, if not impossible, with other optical imaging techniques.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography.

              We demonstrate the depth-resolved and detailed ocular perfusion maps within retina and choroid can be obtained from an ultrahigh sensitive optical microangiography (OMAG). As opposed to the conventional OMAG, we apply the OMAG algorithm along the slow scanning axis to achieve the ultrahigh sensitive imaging to the slow flows within capillaries. We use an 840 nm system operating at an imaging rate of 400 frames/s that requires 3 s to complete one 3D scan of approximately 3 x 3 mm(2) area on retina. We show the superior imaging performance of OMAG to provide functional images of capillary level microcirculation at different land-marked depths within retina and choroid that correlate well with the standard retinal pathology.
                Bookmark

                Author and article information

                Journal
                Biomed Opt Express
                BOE
                Biomedical Optics Express
                Optical Society of America
                2156-7085
                01 April 2011
                01 May 2011
                01 April 2011
                : 2
                : 5
                : 1059-1068
                Affiliations
                [1]Department of Bioengineering, University of Washington, Seattle, WA 98195, USA, and Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
                Author notes
                Article
                143557
                10.1364/BOE.2.001059
                3087564
                21559119
                9b89364c-2f2a-48ce-a0c5-1fac7fd7b2b5
                ©2011 Optical Society of America

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License, which permits download and redistribution, provided that the original work is properly cited. This license restricts the article from being modified or used commercially.

                History
                : 7 March 2011
                : 30 March 2011
                : 31 March 2011
                Funding
                Funded by: National Heart, Lung, and Blood Institute
                Award ID: R01 HL093140
                Funded by: National Institute of Biomedical Imaging and Bioengineering
                Award ID: R01 EB009682
                Funded by: American Heart Association
                Award ID: 0855733G
                Categories
                Cardiovascular Applications
                Custom metadata
                True
                0

                Vision sciences
                (170.4500) optical coherence tomography,(170.3880) medical and biological imaging

                Comments

                Comment on this article