6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptional profiling of Salmonella enterica serovar Enteritidis exposed to ethanolic extract of organic cranberry pomace

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-typhoidal Salmonella enterica serovars continue to be an important food safety issue worldwide. Cranberry ( Vaccinium macrocarpon Ait) fruits possess antimicrobial properties due to their various acids and phenolic compounds; however, the underlying mechanism of actions is poorly understood. We evaluated the effects of cranberry extracts on the growth rate of Salmonella enterica serovars Typhimurium, Enteritidis and Heidelberg and on the transcriptomic profile of Salmonella Enteritidis to gain insight into phenotypic and transcriptional changes induced by cranberry extracts on this pathogen. An ethanolic extract from cranberry pomaces (KCOH) and two of its sub-fractions, anthocyanins (CRFa20) and non-anthocyanin polyphenols (CRFp85), were used. The minimum inhibitory (MICs) and bactericidal (MBCs) concentrations of these fractions against tested pathogens were obtained using the broth micro-dilution method according to the Clinical Laboratory Standard Institute’s guidelines. Transcriptional profiles of S. Enteritidis grown in cation-adjusted Mueller-Hinton broth supplemented with or without 2 or 4 mg/ml of KCOH were compared by RNASeq to reveal gene modulations serving as markers for biological activity. The MIC and MBC values of KCOH were 8 and 16 mg/mL, respectively, against all tested S. enterica isolates. The MIC value was 4 mg/mL for both CRFa20 and CRFp85 sub-fractions, and a reduced MBC value was obtained for CRFp85 (4 mg/ml). Treatment of S. Enteritidis with KCOH revealed a concentration-dependent transcriptional signature. Compared to the control, 2 mg/ml of KCOH exposure resulted in 89 differentially expressed genes (DEGs), of which 53 and 36 were downregulated and upregulated, respectively. The upregulated genes included those involved in citrate metabolism, enterobactin synthesis and transport, and virulence. Exposure to 4 mg/ml KCOH led to the modulated expression of 376 genes, of which 233 were downregulated and 143 upregulated, which is 4.2 times more DEGs than from exposure to 2 mg/ml KCOH. The downregulated genes were related to flagellar motility, Salmonella Pathogenicity Island-1 (SPI-1), cell wall/membrane biogenesis, and transcription. Moreover, genes involved in energy production and conversion, carbohydrate transport and metabolism, and coenzyme transport and metabolism were upregulated during exposure to 4 mg/ml KCOH. Overall, 57 genes were differentially expressed (48 downregulated and 9 upregulated) in response to both concentrations. Both concentrations of KCOH downregulated expression of hilA, which is a major SPI-1 transcriptional regulator. This study provides information on the response of Salmonella exposed to cranberry extracts, which could be used in the control of this important foodborne pathogen.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Siderophores: structure and function of microbial iron transport compounds.

              Siderophores are common products of aerobic and facultative anaerobic bacteria and of fungi. Elucidation of the molecular genetics of siderophore synthesis, and the regulation of this process by iron, has been facilitated by the fact that E. coli uses its own siderophores as well as those derived from other species, including fungi. Overproduction of the siderophore and its transport system at low iron is in this species well established to be the result of negative transcriptional repression, but the detailed mechanism may be positive in other organisms. Siderophores are transported across the double membrane envelope of E. coli via a gating mechanism linking the inner and outer membranes.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ValidationRole: VisualizationRole: Writing – original draft
                Role: Data curationRole: Formal analysisRole: Writing – review & editing
                Role: Methodology
                Role: Resources
                Role: Data curationRole: Formal analysis
                Role: Writing – review & editing
                Role: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: InvestigationRole: Project administrationRole: ResourcesRole: SupervisionRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                3 July 2019
                2019
                : 14
                : 7
                : e0219163
                Affiliations
                [1 ] Department of Food Science, University of Guelph, Ontario, Canada
                [2 ] Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
                [3 ] Summerland Research and Development Center, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
                [4 ] Charlottetown Research and Development Center, Agriculture and Agri-Food Canada, Charlottetown, Prince Edward Island, Canada
                University of Minnesota, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Article
                PONE-D-19-10256
                10.1371/journal.pone.0219163
                6608956
                31269043
                9c38f039-678e-49ab-a655-ecbd72cd7672
                © 2019 Das et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 April 2019
                : 17 June 2019
                Page count
                Figures: 8, Tables: 3, Pages: 20
                Funding
                QD was supported by OMFRA HQP, Agriculture and Agri-Food Canada through the Organic Science Cluster II program (#AIP CL-02 AGR-10383); the Canadian Federal Genomic Research and Development Initiative on Antimicrobial resistance (GRDI-AMR) and OMFRA HQP program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine and Health Sciences
                Infectious Diseases
                Bacterial Diseases
                Salmonella
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Bacterial Pathogens
                Salmonella
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Bacterial Pathogens
                Salmonella
                Biology and Life Sciences
                Organisms
                Bacteria
                Enterobacteriaceae
                Salmonella
                Biology and Life Sciences
                Genetics
                Gene Expression
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Cell Membranes
                Membrane Proteins
                Outer Membrane Proteins
                Medicine and Health Sciences
                Infectious Diseases
                Bacterial Diseases
                Salmonella
                Salmonella Enterica
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Bacterial Pathogens
                Salmonella
                Salmonella Enterica
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Bacterial Pathogens
                Salmonella
                Salmonella Enterica
                Biology and Life Sciences
                Organisms
                Bacteria
                Enterobacteriaceae
                Salmonella
                Salmonella Enterica
                Medicine and Health Sciences
                Infectious Diseases
                Bacterial Diseases
                Salmonella
                Salmonella Typhimurium
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Bacterial Pathogens
                Salmonella
                Salmonella Typhimurium
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Bacterial Pathogens
                Salmonella
                Salmonella Typhimurium
                Biology and Life Sciences
                Organisms
                Bacteria
                Enterobacteriaceae
                Salmonella
                Salmonella Typhimurium
                Biology and Life Sciences
                Cell Biology
                Cell Motility
                Chemotaxis
                Physical Sciences
                Chemistry
                Chemical Elements
                Iron
                Biology and Life Sciences
                Genetics
                Gene Expression
                Gene Regulation
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article