0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      lncRNA PITPNA-AS1 promotes cell proliferation and metastasis in hepatocellular carcinoma by upregulating PDGFD

      research-article
      1 , 1
      Aging (Albany NY)
      Impact Journals
      hepatocellular carcinoma, lncRNA, PITPNA-AS1, miR-363-5p, PDGFD

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatocellular carcinoma (HCC) ranks high in morbidity and mortality among notorious malignancies because of the lack of effective biomarkers and treatments. LncRNA PITPNA antisense RNA 1 (PITPNA-AS1) plays an oncogenic role in HCC, yet the mechanistic basis remains unprobed. Here using Bioinformatics and PCR analyses, we validated that PITPNA-AS1 expression was significantly increased in HCC. The levels of PITPNA-AS1 in tumors were reversely correlated with the prognosis in HCC patients. Downregulation of PITPNA-AS1 inhibited malignant activities of HCC cells. Next, we elucidated that PITPNA-AS1 acts as a competing endogenous RNA (ceRNA) to sponge miR-363-5p, thereby regulating the expression of platelet-derived growth factor-D (PDGFD). Moreover, the suppression of HCC cell activities by PITPNA-AS1 downregulation can be removed by PDGFD overexpression or miR-363-5p inhibition. Collectively, our work reveals the involvement of the PITPNA-AS1/miR-363-5p/PDGFD regulatory axis in HCC progression.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics, 2019

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2015, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2016, were collected by the National Center for Health Statistics. In 2019, 1,762,450 new cancer cases and 606,880 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2006-2015) was stable in women and declined by approximately 2% per year in men, whereas the cancer death rate (2007-2016) declined annually by 1.4% and 1.8%, respectively. The overall cancer death rate dropped continuously from 1991 to 2016 by a total of 27%, translating into approximately 2,629,200 fewer cancer deaths than would have been expected if death rates had remained at their peak. Although the racial gap in cancer mortality is slowly narrowing, socioeconomic inequalities are widening, with the most notable gaps for the most preventable cancers. For example, compared with the most affluent counties, mortality rates in the poorest counties were 2-fold higher for cervical cancer and 40% higher for male lung and liver cancers during 2012-2016. Some states are home to both the wealthiest and the poorest counties, suggesting the opportunity for more equitable dissemination of effective cancer prevention, early detection, and treatment strategies. A broader application of existing cancer control knowledge with an emphasis on disadvantaged groups would undoubtedly accelerate progress against cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global cancer statistics, 2012.

            Cancer constitutes an enormous burden on society in more and less economically developed countries alike. The occurrence of cancer is increasing because of the growth and aging of the population, as well as an increasing prevalence of established risk factors such as smoking, overweight, physical inactivity, and changing reproductive patterns associated with urbanization and economic development. Based on GLOBOCAN estimates, about 14.1 million new cancer cases and 8.2 million deaths occurred in 2012 worldwide. Over the years, the burden has shifted to less developed countries, which currently account for about 57% of cases and 65% of cancer deaths worldwide. Lung cancer is the leading cause of cancer death among males in both more and less developed countries, and has surpassed breast cancer as the leading cause of cancer death among females in more developed countries; breast cancer remains the leading cause of cancer death among females in less developed countries. Other leading causes of cancer death in more developed countries include colorectal cancer among males and females and prostate cancer among males. In less developed countries, liver and stomach cancer among males and cervical cancer among females are also leading causes of cancer death. Although incidence rates for all cancers combined are nearly twice as high in more developed than in less developed countries in both males and females, mortality rates are only 8% to 15% higher in more developed countries. This disparity reflects regional differences in the mix of cancers, which is affected by risk factors and detection practices, and/or the availability of treatment. Risk factors associated with the leading causes of cancer death include tobacco use (lung, colorectal, stomach, and liver cancer), overweight/obesity and physical inactivity (breast and colorectal cancer), and infection (liver, stomach, and cervical cancer). A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests. © 2015 American Cancer Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Natural RNA circles function as efficient microRNA sponges.

              MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so-called competing endogenous RNA in humans and target mimicry in plants. We previously identified a highly expressed circular RNA (circRNA) in human and mouse brain. Here we show that this circRNA acts as a miR-7 sponge; we term this circular transcript ciRS-7 (circular RNA sponge for miR-7). ciRS-7 contains more than 70 selectively conserved miRNA target sites, and it is highly and widely associated with Argonaute (AGO) proteins in a miR-7-dependent manner. Although the circRNA is completely resistant to miRNA-mediated target destabilization, it strongly suppresses miR-7 activity, resulting in increased levels of miR-7 targets. In the mouse brain, we observe overlapping co-expression of ciRS-7 and miR-7, particularly in neocortical and hippocampal neurons, suggesting a high degree of endogenous interaction. We further show that the testis-specific circRNA, sex-determining region Y (Sry), serves as a miR-138 sponge, suggesting that miRNA sponge effects achieved by circRNA formation are a general phenomenon. This study serves as the first, to our knowledge, functional analysis of a naturally expressed circRNA.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                31 May 2023
                02 March 2023
                : 15
                : 10
                : 4071-4083
                Affiliations
                [1 ]Department of Surgery, Tongxiang First People’s Hospital, Tongxiang 314500, Zhejiang, P.R. China
                Author notes
                Correspondence to: Xiaojian Liu; email: xiaoj5l@163.com, https://orcid.org/0000-0003-0592-191X
                Article
                204566 204566
                10.18632/aging.204566
                10258019
                37253627
                9d6c8d03-417d-4a2d-88b5-db21322d5a51
                Copyright: © 2023 Yao and Liu.

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 October 2021
                : 11 February 2023
                Categories
                Research Paper

                Cell biology
                hepatocellular carcinoma,lncrna,pitpna-as1,mir-363-5p,pdgfd
                Cell biology
                hepatocellular carcinoma, lncrna, pitpna-as1, mir-363-5p, pdgfd

                Comments

                Comment on this article