6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CircRNA hsa_circ_0074834 promotes the osteogenesis-angiogenesis coupling process in bone mesenchymal stem cells (BMSCs) by acting as a ceRNA for miR-942-5p

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bone tissue has a strong ability to repair itself. When treated properly, most fractures will heal well. However, some fractures are difficult to heal. When a fracture does not heal, it is called nonunion. Approximately, 5% of all fracture patients have difficulty healing. Because of the continuous movement of the fracture site, bone nonunion is usually accompanied by pain, which greatly reduces the quality of life of patients. Bone marrow mesenchymal stem cells (BMSCs) play an important role in the process of nonunion. Circular RNAs (circRNAs) are a unique kind of noncoding RNA and represent the latest research hotspot in the RNA field. At present, no studies have reported a role of circRNAs in the development of nonunion. After isolation of BMSCs from patients with nonunion, the expression of circRNAs in these cells was detected by using a circRNA microarray. Alkaline phosphatase and Alizarin red staining were used to detect the regulation of osteogenic differentiation of BMSCs by hsa_circ_0074834. The target gene of hsa_circ_0074834 was detected by RNA pull-down and double-luciferase reporter assay. The ability of hsa_circ_0074834 to regulate the osteogenesis of BMSCs in vivo was tested by heterotopic osteogenesis and single cortical bone defect experiments. The results showed that the expression of hsa_circ_0074834 in BMSCs from patients with nonunion was decreased. Hsa_circ_0074834 acts as a ceRNA to regulate the expression of ZEB1 and VEGF through microRNA-942-5p. Hsa_circ_0074834 can promote osteogenic differentiation of BMSCs and the repair of bone defects. These results suggest that circRNAs may be a key target for the treatment of nonunion.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair.

          Osteoblast-derived VEGF is important for bone development and postnatal bone homeostasis. Previous studies have demonstrated that VEGF affects bone repair and regeneration; however, the cellular mechanisms by which it works are not fully understood. In this study, we investigated the functions of osteoblast-derived VEGF in healing of a bone defect. The results indicate that osteoblast-derived VEGF plays critical roles at several stages in the repair process. Using transgenic mice with osteoblast-specific deletion of Vegfa, we demonstrated that VEGF promoted macrophage recruitment and angiogenic responses in the inflammation phase, and optimal levels of VEGF were required for coupling of angiogenesis and osteogenesis in areas where repair occurs by intramembranous ossification. VEGF likely functions as a paracrine factor in this process because deletion of Vegfr2 in osteoblastic lineage cells enhanced osteoblastic maturation and mineralization. Furthermore, osteoblast- and hypertrophic chondrocyte-derived VEGF stimulated recruitment of blood vessels and osteoclasts and promoted cartilage resorption at the repair site during the periosteal endochondral ossification stage. Finally, osteoblast-derived VEGF stimulated osteoclast formation in the final remodeling phase of the repair process. These findings provide a basis for clinical strategies to improve bone regeneration and treat defects in bone healing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regenerative effects of transplanted mesenchymal stem cells in fracture healing.

            Mesenchymal stem cells (MSC) have a therapeutic potential in patients with fractures to reduce the time of healing and treat nonunions. The use of MSC to treat fractures is attractive for several reasons. First, MSCs would be implementing conventional reparative process that seems to be defective or protracted. Secondly, the effects of MSCs treatment would be needed only for relatively brief duration of reparation. However, an integrated approach to define the multiple regenerative contributions of MSC to the fracture repair process is necessary before clinical trials are initiated. In this study, using a stabilized tibia fracture mouse model, we determined the dynamic migration of transplanted MSC to the fracture site, their contributions to the repair process initiation, and their role in modulating the injury-related inflammatory responses. Using MSC expressing luciferase, we determined by bioluminescence imaging that the MSC migration at the fracture site is time- and dose-dependent and, it is exclusively CXCR4-dependent. MSC improved the fracture healing affecting the callus biomechanical properties and such improvement correlated with an increase in cartilage and bone content, and changes in callus morphology as determined by micro-computed tomography and histological studies. Transplanting CMV-Cre-R26R-Lac Z-MSC, we found that MSCs engrafted within the callus endosteal niche. Using MSCs from BMP-2-Lac Z mice genetically modified using a bacterial artificial chromosome system to be beta-gal reporters for bone morphogenic protein 2 (BMP-2) expression, we found that MSCs contributed to the callus initiation by expressing BMP-2. The knowledge of the multiple MSC regenerative abilities in fracture healing will allow design of novel MSC-based therapies to treat fractures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The emerging landscape of circular RNA ciRS-7 in cancer (Review).

              Circular RNAs (circRNAs) are a novel class of non-coding RNA molecules ubiquitously present in the cytoplasm of eukaryotic cells. CircRNAs are generated from exons or introns via multiple mechanisms. A recently identified circRNA, ciRS-7, can regulate the activities of miRNAs, mRNAs, and RBP to exert specific biological effects. Also, ciRS-7 acts as a natural competing endogenous RNA, a.k.a. 'super sponge' of microRNA-7 (miR-7) that sequesters and competitively inhibits the activity of miR-7. This competition between ciRS-7 and miR-7 may have profound effects on oncogenesis. This review will summarize the origin and functions of ciRS-7 and discuss the relationship among ciRS-7, its target molecules and cancer.
                Bookmark

                Author and article information

                Contributors
                liutang1204@csu.edu.cn
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                5 December 2019
                5 December 2019
                December 2019
                : 10
                : 12
                : 932
                Affiliations
                [1 ]ISNI 0000 0001 0379 7164, GRID grid.216417.7, Department of Orthopedics, The Second Xiangya Hospital, , Central South University, ; Changsha, Hunan 410011 P.R. China
                [2 ]ISNI 0000 0001 0379 7164, GRID grid.216417.7, Department of Immunology, Xiangya School of Medicine, , Central South University, ; 88 Xiangya Rd., Changsha, Hunan 410008 P.R. China
                Article
                2161
                10.1038/s41419-019-2161-5
                6895238
                31804461
                a087885e-e364-454e-a31f-277fcd92695c
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 July 2019
                : 18 October 2019
                : 21 October 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Cell biology
                regeneration,trauma
                Cell biology
                regeneration, trauma

                Comments

                Comment on this article