299
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NCBI GEO: archive for high-throughput functional genomic data

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) is the largest public repository for high-throughput gene expression data. Additionally, GEO hosts other categories of high-throughput functional genomic data, including those that examine genome copy number variations, chromatin structure, methylation status and transcription factor binding. These data are generated by the research community using high-throughput technologies like microarrays and, more recently, next-generation sequencing. The database has a flexible infrastructure that can capture fully annotated raw and processed data, enabling compliance with major community-derived scientific reporting standards such as ‘Minimum Information About a Microarray Experiment’ (MIAME). In addition to serving as a centralized data storage hub, GEO offers many tools and features that allow users to effectively explore, analyze and download expression data from both gene-centric and experiment-centric perspectives. This article summarizes the GEO repository structure, content and operating procedures, as well as recently introduced data mining features. GEO is freely accessible at http://www.ncbi.nlm.nih.gov/geo/.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Database resources of the National Center for Biotechnology Information

          In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data available through NCBI's web site. NCBI resources include Entrez, the Entrez Programming Utilities, My NCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link, Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genome, Genome Project and related tools, the Trace, Assembly, and Short Read Archives, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups, Influenza Viral Resources, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Database of Genotype and Phenotype, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool and the PubChem suite of small molecule databases. Augmenting the web applications are custom implementations of the BLAST program optimized to search specialized data sets. These resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells.

            Small interfering RNAs (siRNAs) direct RNA interference (RNAi) in eukaryotes. In flies, somatic cells produce siRNAs from exogenous double-stranded RNA (dsRNA) as a defense against viral infection. We identified endogenous siRNAs (endo-siRNAs), 21 nucleotides in length, that correspond to transposons and heterochromatic sequences in the somatic cells of Drosophila melanogaster. We also detected endo-siRNAs complementary to messenger RNAs (mRNAs); these siRNAs disproportionately mapped to the complementary regions of overlapping mRNAs predicted to form double-stranded RNA in vivo. Normal accumulation of somatic endo-siRNAs requires the siRNA-generating ribonuclease Dicer-2 and the RNAi effector protein Argonaute2 (Ago2). We propose that endo-siRNAs generated by the fly RNAi pathway silence selfish genetic elements in the soma, much as Piwi-interacting RNAs do in the germ line.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sequence census methods for functional genomics.

              Next-generation sequencing technologies are beginning to facilitate genome sequencing. But in addition, new applications and new assay concepts have emerged that are vastly increasing our ability to understand genome function.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                January 2009
                January 2009
                21 October 2008
                21 October 2008
                : 37
                : Database issue , Database issue
                : D885-D890
                Affiliations
                National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892, USA
                Author notes
                *To whom correspondence should be addressed. Tel: +1 301 402 4057; Fax: +1 301 480 0109; Email: barrett@ 123456ncbi.nlm.nih.gov
                Article
                gkn764
                10.1093/nar/gkn764
                2686538
                18940857
                a3d67866-25f8-410f-8413-096b92c03510
                Published by Oxford University Press 2008

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 September 2008
                : 6 October 2008
                Categories
                Articles

                Genetics
                Genetics

                Comments

                Comment on this article