26
views
0
recommends
+1 Recommend
0 collections
    5
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deubiquitylation Machinery Is Required for Embryonic Polarity in Caenorhabditis elegans

      research-article
      , *
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Caenorhabditis elegans one-cell embryo polarizes in response to a cue from the paternally donated centrosome and asymmetrically segregates cell fate determinants that direct the developmental program of the worm. We have found that genes encoding putative deubiquitylating enzymes (DUBs) are required for polarization of one-cell embryos. Maternal loss of the proteins MATH-33 and USP-47 leads to variable inability to correctly establish and maintain asymmetry as defined by posterior and anterior polarity proteins PAR-2 and PAR-3. The first observable defect is variable positioning of the centrosome with respect to the cell cortex and the male pronucleus. The severity of the polarity defects correlates with distance of the centrosome from the cortex. Furthermore, polarity defects can be bypassed by mutations that bring the centrosome in close proximity to the cortex. In addition we find that polarity and centrosome positioning defects can be suppressed by compromising protein turnover. We propose that the DUB activity of MATH-33 and USP-47 stabilizes one or more proteins required for association of the centrosome with the cortex. Because these DUBs are homologous to two members of a group of DUBs that act in fission yeast polarity, we tested additional members of that family and found that another C. elegans DUB gene, usp-46, also contributes to polarity. Our finding that deubiquitylating enzymes required for polarity in Schizosaccharomyces pombe are also required in C. elegans raises the possibility that these DUBs act through an evolutionarily conserved mechanism to control cell polarity.

          Author Summary

          In eukaryotes, modification of proteins by the covalent ligation of a protein called ubiquitin is an important regulatory mechanism. In this study we found that deubiquitylation enzymes, which are known to cleave ubiquitin off of target proteins, are required for asymmetry in one-cell embryos of the nematode C. elegans. In one-cell embryos the establishment of asymmetry depends on a signal from the centrosome, a microtubule-organizing center. This signal breaks homogeneity in the contractile cytoskeleton located at the cortex of the embryo. We have identified three deubiquitylation enzymes that are necessary for the centrosome to properly localize adjacent to the cortex to perform its symmetry-breaking role. Furthermore, a homologous group of enzymes in fission yeast also regulates cell polarity. Our results suggest that a novel mechanism of centrosome localization regulated by ubiquitylation exists in C. elegans; this mechanism is masked by genetic redundancy and may be an evolutionarily conserved mechanism for cell asymmetry.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          The genetic landscape of a cell.

          A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Specific interference by ingested dsRNA.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins.

              Selective trafficking of membrane proteins to lysosomes for destruction is required for proper cell signalling and metabolism. Ubiquitylation aids this process by specifying which proteins should be transported to the lysosome lumen by the multivesicular endosome pathway. The endosomal sorting complex required for transport (ESCRT) machinery sorts cargo labelled with ubiquitin into invaginations of endosome membranes. Then, through a highly conserved mechanism also used in cytokinesis and viral budding, it mediates the breaking off of the cargo-containing intraluminal vesicles from the perimeter membrane. The involvement of the ESCRT machinery in suppressing diseases such as cancer, neurodegeneration and infections underscores its importance to the cell.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                November 2012
                November 2012
                29 November 2012
                : 8
                : 11
                : e1003092
                Affiliations
                [1]Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
                Harvard University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: RJM KJK. Performed the experiments: RJM. Analyzed the data: RJM. Wrote the paper: RJM KJK.

                Article
                PGENETICS-D-12-01088
                10.1371/journal.pgen.1003092
                3510043
                23209443
                a5b48bd3-cd93-4d5a-aea0-159ec0484c5e
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 2 May 2012
                : 1 October 2012
                Page count
                Pages: 17
                Funding
                This work was supported by NIH R01 GM079112 to KJK. RJM was partially supported by NIH training grant T32GM007273. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Enzymes
                Enzyme Classes
                Hydrolases
                Developmental Biology
                Cell Fate Determination
                Embryology
                Genetics
                Molecular Genetics
                Gene Classes
                Gene Identification and Analysis
                Gene Function
                Model Organisms
                Animal Models
                Caenorhabditis Elegans
                Molecular Cell Biology
                Cellular Structures
                Cytoskeleton

                Genetics
                Genetics

                Comments

                Comment on this article