79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The genome of cultivated sweet potato containsAgrobacteriumT-DNAs with expressed genes: An example of a naturally transgenic food crop

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Agrobacterium rhizogenes and Agrobacterium tumefaciens are plant pathogenic bacteria capable of transferring DNA fragments [transfer DNA (T-DNA)] bearing functional genes into the host plant genome. This naturally occurring mechanism has been adapted by plant biotechnologists to develop genetically modified crops that today are grown on more than 10% of the world's arable land, although their use can result in considerable controversy. While assembling small interfering RNAs, or siRNAs, of sweet potato plants for metagenomic analysis, sequences homologous to T-DNA sequences from Agrobacterium spp. were discovered. Simple and quantitative PCR, Southern blotting, genome walking, and bacterial artificial chromosome library screening and sequencing unambiguously demonstrated that two different T-DNA regions (IbT-DNA1 and IbT-DNA2) are present in the cultivated sweet potato (Ipomoea batatas [L.] Lam.) genome and that these foreign genes are expressed at detectable levels in different tissues of the sweet potato plant. IbT-DNA1 was found to contain four open reading frames (ORFs) homologous to the tryptophan-2-monooxygenase (iaaM), indole-3-acetamide hydrolase (iaaH), C-protein (C-prot), and agrocinopine synthase (Acs) genes of Agrobacterium spp. IbT-DNA1 was detected in all 291 cultigens examined, but not in close wild relatives. IbT-DNA2 contained at least five ORFs with significant homology to the ORF14, ORF17n, rooting locus (Rol)B/RolC, ORF13, and ORF18/ORF17n genes of A. rhizogenes. IbT-DNA2 was detected in 45 of 217 genotypes that included both cultivated and wild species. Our finding, that sweet potato is naturally transgenic while being a widely and traditionally consumed food crop, could affect the current consumer distrust of the safety of transgenic food crops.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Horizontal gene transfer, genome innovation and evolution.

          To what extent is the tree of life the best representation of the evolutionary history of microorganisms? Recent work has shown that, among sets of prokaryotic genomes in which most homologous genes show extremely low sequence divergence, gene content can vary enormously, implying that those genes that are variably present or absent are frequently horizontally transferred. Traditionally, successful horizontal gene transfer was assumed to provide a selective advantage to either the host or the gene itself, but could horizontally transferred genes be neutral or nearly neutral? We suggest that for many prokaryotes, the boundaries between species are fuzzy, and therefore the principles of population genetics must be broadened so that they can be applied to higher taxonomic categories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes.

            Although common among bacteria, lateral gene transfer-the movement of genes between distantly related organisms-is thought to occur only rarely between bacteria and multicellular eukaryotes. However, the presence of endosymbionts, such as Wolbachia pipientis, within some eukaryotic germlines may facilitate bacterial gene transfers to eukaryotic host genomes. We therefore examined host genomes for evidence of gene transfer events from Wolbachia bacteria to their hosts. We found and confirmed transfers into the genomes of four insect and four nematode species that range from nearly the entire Wolbachia genome (>1 megabase) to short (<500 base pairs) insertions. Potential Wolbachia-to-host transfers were also detected computationally in three additional sequenced insect genomes. We also show that some of these inserted Wolbachia genes are transcribed within eukaryotic cells lacking endosymbionts. Therefore, heritable lateral gene transfer occurs into eukaryotic hosts from their prokaryote symbionts, potentially providing a mechanism for acquisition of new genes and functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses.

              We report the first identification of novel viruses, and sequence of an entire viral genome, by a single step of high-throughput parallel sequencing of small RNAs from diseased, as well as symptomless plants. Contigs were assembled from sequenced total siRNA from plants using small sequence assembly software and could positively identify RNA, ssDNA and dsDNA reverse transcribing viruses and in one case spanned the entire genome. The results present a novel approach which cannot only identify known viral pathogens, occurring at extremely low titers, but also novel viruses, without the necessity of any prior knowledge.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                May 05 2015
                May 05 2015
                May 05 2015
                April 20 2015
                : 112
                : 18
                : 5844-5849
                Article
                10.1073/pnas.1419685112
                25902487
                a68b86d0-bd64-4f06-ba0c-bb822178be1d
                © 2015
                History

                Comments

                Comment on this article