21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A strategy for constructing aneuploid yeast strains by transient nondisjunction of a target chromosome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Most methods for constructing aneuploid yeast strains that have gained a specific chromosome rely on spontaneous failures of cell division fidelity. In Saccharomyces cerevisiae, extra chromosomes can be obtained when errors in meiosis or mitosis lead to nondisjunction, or when nuclear breakdown occurs in heterokaryons. We describe a strategy for constructing N+1 disomes that does not require such spontaneous failures. The method combines two well-characterized genetic tools: a conditional centromere that transiently blocks disjunction of one specific chromosome, and a duplication marker assay that identifies disomes among daughter cells. To test the strategy, we targeted chromosomes III, IV, and VI for duplication.

          Results

          The centromere of each chromosome was replaced by a centromere that can be blocked by growth in galactose, and ura3::HIS3, a duplication marker. Transient exposure to galactose induced the appearance of colonies carrying duplicated markers for chromosomes III or IV, but not VI. Microarray-based comparative genomic hybridization (CGH) confirmed that disomic strains carrying extra chromosome III or IV were generated. Chromosome VI contains several genes that are known to be deleterious when overexpressed, including the beta-tubulin gene TUB2. To test whether a tubulin stoichiometry imbalance is necessary for the apparent lethality caused by an extra chromosome VI, we supplied the parent strain with extra copies of the alpha-tubulin gene TUB1, then induced nondisjunction. Galactose-dependent chromosome VI disomes were produced, as revealed by CGH. Some chromosome VI disomes also carried extra, unselected copies of additional chromosomes.

          Conclusion

          This method causes efficient nondisjunction of a targeted chromosome and allows resulting disomic cells to be identified and maintained. We used the method to test the role of tubulin imbalance in the apparent lethality of disomic chromosome VI. Our results indicate that a tubulin imbalance is necessary for disomic VI lethality, but it may not be the only dosage-dependent effect.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Exploring the metabolic and genetic control of gene expression on a genomic scale.

          DNA microarrays containing virtually every gene of Saccharomyces cerevisiae were used to carry out a comprehensive investigation of the temporal program of gene expression accompanying the metabolic shift from fermentation to respiration. The expression profiles observed for genes with known metabolic functions pointed to features of the metabolic reprogramming that occur during the diauxic shift, and the expression patterns of many previously uncharacterized genes provided clues to their possible functions. The same DNA microarrays were also used to identify genes whose expression was affected by deletion of the transcriptional co-repressor TUP1 or overexpression of the transcriptional activator YAP1. These results demonstrate the feasibility and utility of this approach to genomewide exploration of gene expression patterns.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of aneuploidy on cellular physiology and cell division in haploid yeast.

            Aneuploidy is a condition frequently found in tumor cells, but its effect on cellular physiology is not known. We have characterized one aspect of aneuploidy: the gain of extra chromosomes. We created a collection of haploid yeast strains that each bear an extra copy of one or more of almost all of the yeast chromosomes. Their characterization revealed that aneuploid strains share a number of phenotypes, including defects in cell cycle progression, increased glucose uptake, and increased sensitivity to conditions interfering with protein synthesis and protein folding. These phenotypes were observed only in strains carrying additional yeast genes, which indicates that they reflect the consequences of additional protein production as well as the resulting imbalances in cellular protein composition. We conclude that aneuploidy causes not only a proliferative disadvantage but also a set of phenotypes that is independent of the identity of the individual extra chromosomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli.

              A procedure for the rapid isolation of DNA from the yeast Saccharomyces cerevisiae is described. To release plasmid DNA for the transformation of Escherichia coli, cells are subjected to vortex mixing in the presence of acid-washed glass beads, Triton X-100, sodium dodecyl sulfate, phenol and chloroform. Centrifugation of this mixture separates the DNA from cellular debris. E. coli can be efficiently transformed with plasmid present in the aqueous layer without further purification of the plasmid DNA. This procedure also releases chromosomal DNA. Following two ethanol precipitations, the chromosomal DNA can be digested by restriction endonucleases and analysed by Southern blot analysis.
                Bookmark

                Author and article information

                Journal
                BMC Genet
                BMC Genetics
                BioMed Central
                1471-2156
                2009
                13 July 2009
                : 10
                : 36
                Affiliations
                [1 ]Biology Department, Gonzaga University, 502 E Boone Avenue, Spokane, WA 99258, USA
                Article
                1471-2156-10-36
                10.1186/1471-2156-10-36
                2725114
                19594932
                a76c836a-9d27-42aa-b687-dacb04daa310
                Copyright © 2009 Anders et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 January 2009
                : 13 July 2009
                Categories
                Methodology Article

                Genetics
                Genetics

                Comments

                Comment on this article