9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Validating a Phenomenological Mathematical Model for Public Health and Safety Interventions Influencing the Evolutionary Stages of Recent Outbreak for Long-Term and Short-Term Domains in Pakistan

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During the outbreak of an epidemic, it becomes significantly essential to monitor the effects of containment measures and forecast the outbreak, including the epidemic peak. Many countries have either implemented strict lockdown to counter the spread of coronavirus disease or taken necessary preventive measures across the world to reduce the outbreak of this epidemic war. Several epidemic models have been presented across the world to examine the effects of public health-related strategies on mitigating the spread of current infectious disease, yet no reputable model has been presented for Pakistan as well as other South-Asian developing countries as per the authors’ knowledge. In this research, an actual coronavirus prediction in Pakistan is presented, which may guide the decision-makers as to how this pandemic has spread across the country and how it can be controlled. Furthermore, in the absence of targeted medicines, the analysis helps to develop a precise plan for the eradication of the outbreak by adopting the calculated steps at the right time. The mathematical phenomenological models have been adopted in this study to predict, project, and simulate the overall affected cases reflected due to the recent outbreak in Pakistan. These models predict the expected growth, and the estimated results are almost well matched with the real cases. Through the calibration of parameters and analyzing the current situation, forecast for the appearance of new cases in Pakistan is reported till the end of this year. The constant level of number of patients and time to reach specific levels are also reported through the simulations. The drastic conditions are also discussed which may occur if all the preventive restraints are removed. This research quantitatively describes the significant characteristics of the spread of corona cases. It acknowledges and provides an understanding of a short-term and long-term transmission of coronavirus outbreak in the country as three evolutionary phases. Therefore, this research provides a pathway to cope with the emerging threat of a severe outbreak in developing and nondeveloping countries.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding

          Summary Background In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed. Methods We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus. Findings The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues. Interpretation 2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation. Funding National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study

            Summary Background Since Dec 31, 2019, the Chinese city of Wuhan has reported an outbreak of atypical pneumonia caused by the 2019 novel coronavirus (2019-nCoV). Cases have been exported to other Chinese cities, as well as internationally, threatening to trigger a global outbreak. Here, we provide an estimate of the size of the epidemic in Wuhan on the basis of the number of cases exported from Wuhan to cities outside mainland China and forecast the extent of the domestic and global public health risks of epidemics, accounting for social and non-pharmaceutical prevention interventions. Methods We used data from Dec 31, 2019, to Jan 28, 2020, on the number of cases exported from Wuhan internationally (known days of symptom onset from Dec 25, 2019, to Jan 19, 2020) to infer the number of infections in Wuhan from Dec 1, 2019, to Jan 25, 2020. Cases exported domestically were then estimated. We forecasted the national and global spread of 2019-nCoV, accounting for the effect of the metropolitan-wide quarantine of Wuhan and surrounding cities, which began Jan 23–24, 2020. We used data on monthly flight bookings from the Official Aviation Guide and data on human mobility across more than 300 prefecture-level cities in mainland China from the Tencent database. Data on confirmed cases were obtained from the reports published by the Chinese Center for Disease Control and Prevention. Serial interval estimates were based on previous studies of severe acute respiratory syndrome coronavirus (SARS-CoV). A susceptible-exposed-infectious-recovered metapopulation model was used to simulate the epidemics across all major cities in China. The basic reproductive number was estimated using Markov Chain Monte Carlo methods and presented using the resulting posterior mean and 95% credibile interval (CrI). Findings In our baseline scenario, we estimated that the basic reproductive number for 2019-nCoV was 2·68 (95% CrI 2·47–2·86) and that 75 815 individuals (95% CrI 37 304–130 330) have been infected in Wuhan as of Jan 25, 2020. The epidemic doubling time was 6·4 days (95% CrI 5·8–7·1). We estimated that in the baseline scenario, Chongqing, Beijing, Shanghai, Guangzhou, and Shenzhen had imported 461 (95% CrI 227–805), 113 (57–193), 98 (49–168), 111 (56–191), and 80 (40–139) infections from Wuhan, respectively. If the transmissibility of 2019-nCoV were similar everywhere domestically and over time, we inferred that epidemics are already growing exponentially in multiple major cities of China with a lag time behind the Wuhan outbreak of about 1–2 weeks. Interpretation Given that 2019-nCoV is no longer contained within Wuhan, other major Chinese cities are probably sustaining localised outbreaks. Large cities overseas with close transport links to China could also become outbreak epicentres, unless substantial public health interventions at both the population and personal levels are implemented immediately. Independent self-sustaining outbreaks in major cities globally could become inevitable because of substantial exportation of presymptomatic cases and in the absence of large-scale public health interventions. Preparedness plans and mitigation interventions should be readied for quick deployment globally. Funding Health and Medical Research Fund (Hong Kong, China).
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A Flexible Growth Function for Empirical Use

                Bookmark

                Author and article information

                Contributors
                Journal
                Complexity
                Complexity
                Hindawi Limited
                1099-0526
                1076-2787
                September 29 2020
                September 29 2020
                : 2020
                : 1-9
                Affiliations
                [1 ]Institute of Construction Project Management, CCEA, Zhejiang University, Hangzhou 310058, China
                [2 ]Management Studies Department, Bahria University, Islamabad, Pakistan
                [3 ]Construction Engineering & Management Department, National University of Sciences and Technology, Risalpur Campus, Risalpur, Pakistan
                [4 ]School of Management, Shenzhen University, Shenzhen, Guangdong 518060, China
                [5 ]School of Life Sciences, Zhejiang University, Hangzhou 310058, China
                [6 ]School of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
                [7 ]Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
                [8 ]The Bio Robotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, Pontedera, 56025, Pisa, Italy
                [9 ]Department of Civil Engineering, Pakistan Institute of Engineering & Technology, Multan, Pakistan
                Article
                10.1155/2020/8866071
                aa71ade6-65a0-479f-b42f-7e828d565481
                © 2020

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article