0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A reference genome for the nectar-robbing Black-throated Flowerpiercer ( Diglossa brunneiventris)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Black-throated Flowerpiercers ( Diglossa brunneiventris) are one species representing a phenotypically specialized group of tanagers (Thraupidae) that have hooked bills which allow them to feed by stealing nectar from the base of flowers. Members of the genus are widely distributed in montane regions from Mexico to northern Argentina, and previous studies of Diglossa have focused on their systematics, phylogenetics, and interesting natural history. Despite numerous studies of species within the genus, no genome assembly exists to represent these nectivorous tanagers. We described the assembly of a genome sequence representing a museum-vouchered, wild, female D. brunneiventris collected in Peru. By combining Pacific Biosciences Sequel long-read technology with 10× linked-read and reference-based scaffolding, we produced a 1.08 Gbp pseudochromosomal assembly including 600 scaffolds with a scaffold N50 of 67.3 Mbp, a scaffold L50 of 6, and a BUSCO completeness score of 95%. This new assembly improves representation of the diverse species that comprise the tanagers, improves on scaffold lengths and contiguity when compared to existing genomic resources for tanagers, and provides another avenue of research into the genetic basis of adaptations common to a nectivorous lifestyle among vertebrates.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Sequence Alignment/Map format and SAMtools

          Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: rd@sanger.ac.uk
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement

            Advances in modern sequencing technologies allow us to generate sufficient data to analyze hundreds of bacterial genomes from a single machine in a single day. This potential for sequencing massive numbers of genomes calls for fully automated methods to produce high-quality assemblies and variant calls. We introduce Pilon, a fully automated, all-in-one tool for correcting draft assemblies and calling sequence variants of multiple sizes, including very large insertions and deletions. Pilon works with many types of sequence data, but is particularly strong when supplied with paired end data from two Illumina libraries with small e.g., 180 bp and large e.g., 3–5 Kb inserts. Pilon significantly improves draft genome assemblies by correcting bases, fixing mis-assemblies and filling gaps. For both haploid and diploid genomes, Pilon produces more contiguous genomes with fewer errors, enabling identification of more biologically relevant genes. Furthermore, Pilon identifies small variants with high accuracy as compared to state-of-the-art tools and is unique in its ability to accurately identify large sequence variants including duplications and resolve large insertions. Pilon is being used to improve the assemblies of thousands of new genomes and to identify variants from thousands of clinically relevant bacterial strains. Pilon is freely available as open source software.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              QUAST: quality assessment tool for genome assemblies.

              Limitations of genome sequencing techniques have led to dozens of assembly algorithms, none of which is perfect. A number of methods for comparing assemblers have been developed, but none is yet a recognized benchmark. Further, most existing methods for comparing assemblies are only applicable to new assemblies of finished genomes; the problem of evaluating assemblies of previously unsequenced species has not been adequately considered. Here, we present QUAST-a quality assessment tool for evaluating and comparing genome assemblies. This tool improves on leading assembly comparison software with new ideas and quality metrics. QUAST can evaluate assemblies both with a reference genome, as well as without a reference. QUAST produces many reports, summary tables and plots to help scientists in their research and in their publications. In this study, we used QUAST to compare several genome assemblers on three datasets. QUAST tables and plots for all of them are available in the Supplementary Material, and interactive versions of these reports are on the QUAST website. http://bioinf.spbau.ru/quast . Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                G3 (Bethesda)
                Genetics
                g3journal
                G3: Genes|Genomes|Genetics
                Oxford University Press
                2160-1836
                November 2021
                02 August 2021
                02 August 2021
                : 11
                : 11
                : jkab271
                Affiliations
                Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge , LA 70803, USA
                Author notes
                Corresponding author: 282 Life Sciences Building, Baton Rouge, LA 70806, USA. Email: brant@ 123456lsu.edu
                Author information
                https://orcid.org/0000-0002-1943-0217
                Article
                jkab271
                10.1093/g3journal/jkab271
                8527499
                b7ae513a-4879-441c-b725-0ae414e06be3
                © The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 March 2021
                : 27 July 2021
                : 14 October 2021
                Page count
                Pages: 6
                Funding
                Funded by: Coypu Foundation, DOI 10.13039/100008175;
                Funded by: Wilson Ornithological Society Research;
                Funded by: Society of Systematic Biologists Graduate Student Research Award;
                Funded by: LSU, DOI 10.13039/100008294;
                Funded by: Louisiana Board of Regents Fellowship;
                Funded by: National Science Foundation Graduate Research Fellowship;
                Award ID: AWD-000792
                Funded by: NSF, DOI 10.13039/100000001;
                Award ID: DEB-1655624
                Categories
                Genome Report
                AcademicSubjects/SCI01180
                AcademicSubjects/SCI01140
                AcademicSubjects/SCI00010
                AcademicSubjects/SCI00960

                Genetics
                thraupidae,diglossa brunneiventris,flowerpiercers,long-read sequencing,genome assembly
                Genetics
                thraupidae, diglossa brunneiventris, flowerpiercers, long-read sequencing, genome assembly

                Comments

                Comment on this article