21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Generalized Analysis of Molecular Variance

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many studies in the fields of genetic epidemiology and applied population genetics are predicated on, or require, an assessment of the genetic background diversity of the individuals chosen for study. A number of strategies have been developed for assessing genetic background diversity. These strategies typically focus on genotype data collected on the individuals in the study, based on a panel of DNA markers. However, many of these strategies are either rooted in cluster analysis techniques, and hence suffer from problems inherent to the assignment of the biological and statistical meaning to resulting clusters, or have formulations that do not permit easy and intuitive extensions. We describe a very general approach to the problem of assessing genetic background diversity that extends the analysis of molecular variance (AMOVA) strategy introduced by Excoffier and colleagues some time ago. As in the original AMOVA strategy, the proposed approach, termed generalized AMOVA (GAMOVA), requires a genetic similarity matrix constructed from the allelic profiles of individuals under study and/or allele frequency summaries of the populations from which the individuals have been sampled. The proposed strategy can be used to either estimate the fraction of genetic variation explained by grouping factors such as country of origin, race, or ethnicity, or to quantify the strength of the relationship of the observed genetic background variation to quantitative measures collected on the subjects, such as blood pressure levels or anthropometric measures. Since the formulation of our test statistic is rooted in multivariate linear models, sets of variables can be related to genetic background in multiple regression-like contexts. GAMOVA can also be used to complement graphical representations of genetic diversity such as tree diagrams (dendrograms) or heatmaps. We examine features, advantages, and power of the proposed procedure and showcase its flexibility by using it to analyze a wide variety of published data sets, including data from the Human Genome Diversity Project, classical anthropometry data collected by Howells, and the International HapMap Project.

          Author Summary

          Humans exhibit great genetic diversity. Understanding the factors that contribute to and sustain this diversity is an important research area. Not only can such understanding shed light on human origins, but it can also assist in the discovery of genes and genetic factors that contribute to debilitating diseases. Statistical analysis methods that can facilitate the identification of factors contributing to or associated with human genetic diversity are growing in number as new high-throughput molecular genetic assays and technologies are developed. We consider the use of an analysis method termed generalized analysis of molecular variance (GAMOVA), which builds off of previously proposed analysis methods for testing hypotheses about the factors associated with genetic background diversity. We apply the method in a wide variety of settings and show that it is both flexible and powerful. GAMOVA has great potential to assist in population-based human genetic studies, as it can be used to address questions such as: Is a sample of affected cases and unaffected controls from a homogeneous population, or is there evidence of heterogeneity that could affect the results of an association study? Is there reason to believe that the ancestry of a set of individuals influences the traits that they have?

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Population stratification and spurious allelic association.

          Great efforts and expense have been expended in attempts to detect genetic polymorphisms contributing to susceptibility to complex human disease. Concomitantly, technology for detection and scoring of single nucleotide polymorphisms (SNPs) has undergone rapid development, extensive catalogues of SNPs across the genome have been constructed, and SNPs have been increasingly used as a means for investigation of the genetic causes of complex human diseases. For many diseases, population-based studies of unrelated individuals--in which case-control and cohort studies serve as standard designs for genetic association analysis--can be the most practical and powerful approach. However, extensive debate has arisen about optimum study design, and considerable concern has been expressed that these approaches are prone to population stratification, which can lead to biased or spurious results. Over the past decade, a great shift has been noted, away from case-control and cohort studies, towards family-based association designs. These designs have fewer problems with population stratification but have greater genotyping and sampling requirements, and data can be difficult or impossible to gather. We discuss past evidence for population stratification on genotype-phenotype association studies, review methods to detect and account for it, and present suggestions for future study design and analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estimation of individual admixture: analytical and study design considerations.

            The genome of an admixed individual represents a mixture of alleles from different ancestries. In the United States, the two largest minority groups, African-Americans and Hispanics, are both admixed. An understanding of the admixture proportion at an individual level (individual admixture, or IA) is valuable for both population geneticists and epidemiologists who conduct case-control association studies in these groups. Here we present an extension of a previously described frequentist (maximum likelihood or ML) approach to estimate individual admixture that allows for uncertainty in ancestral allele frequencies. We compare this approach both to prior partial likelihood based methods as well as more recently described Bayesian MCMC methods. Our full ML method demonstrates increased robustness when compared to an existing partial ML approach. Simulations also suggest that this frequentist estimator achieves similar efficiency, measured by the mean squared error criterion, as Bayesian methods but requires just a fraction of the computational time to produce point estimates, allowing for extensive analysis (e.g., simulations) not possible by Bayesian methods. Our simulation results demonstrate that inclusion of ancestral populations or their surrogates in the analysis is required by any method of IA estimation to obtain reasonable results. (c) 2005 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estimation of pairwise relatedness with molecular markers.

              Applications of quantitative genetics and conservation genetics often require measures of pairwise relationships between individuals, which, in the absence of known pedigree structure, can be estimated only by use of molecular markers. Here we introduce methods for the joint estimation of the two-gene and four-gene coefficients of relationship from data on codominant molecular markers in randomly mating populations. In a comparison with other published estimators of pairwise relatedness, we find these new "regression" estimators to be computationally simpler and to yield similar or lower sampling variances, particularly when many loci are used or when loci are hypervariable. Two examples are given in which the new estimators are applied to natural populations, one that reveals isolation-by-distance in an annual plant and the other that suggests a genetic basis for a coat color polymorphism in bears.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                pgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                April 2007
                6 April 2007
                22 February 2007
                : 3
                : 4
                : e51
                Affiliations
                [1 ] Department of Psychiatry, University of California at San Diego, La Jolla, California, United States of America
                [2 ] Department of Family and Preventive Medicine, University of California at San Diego, La Jolla, California, United States of America
                [3 ] Rebecca and John Moores UCSD Cancer Center, University of California at San Diego, La Jolla, California, United States of America
                [4 ] The Center for Human Genetics and Genomics, University of California at San Diego, La Jolla, California, United States of America
                [5 ] The Stein Institute for Research on Aging, University of California at San Diego, La Jolla, California, United States of America
                [6 ] Scripps Genomic Medicine and Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
                University of Alabama at Birmingham, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: nschork@ 123456ucsd.edu
                Article
                06-PLGE-RA-0468R3 plge-03-04-01
                10.1371/journal.pgen.0030051
                1847693
                17411342
                b8456f59-6139-4d90-8b9a-e1fefb183ad4
                Copyright: © 2007 Nievergelt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 26 October 2006
                : 22 February 2007
                Page count
                Pages: 12
                Categories
                Research Article
                Evolutionary Biology
                Genetics and Genomics
                Mathematics
                Public Health and Epidemiology
                Homo (Human)
                Custom metadata
                Nievergelt CM, Libiger O, Schork NJ (2007) Generalized analysis of molecular variance. PLoS Genet 3(4): e51. doi: 10.1371/journal.pgen.0030051

                Genetics
                Genetics

                Comments

                Comment on this article