77
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ultra-deep RNA sequencing has become a powerful approach for genome-wide analysis of pre-mRNA alternative splicing. We develop MATS (multivariate analysis of transcript splicing), a Bayesian statistical framework for flexible hypothesis testing of differential alternative splicing patterns on RNA-Seq data. MATS uses a multivariate uniform prior to model the between-sample correlation in exon splicing patterns, and a Markov chain Monte Carlo (MCMC) method coupled with a simulation-based adaptive sampling procedure to calculate the P-value and false discovery rate (FDR) of differential alternative splicing. Importantly, the MATS approach is applicable to almost any type of null hypotheses of interest, providing the flexibility to identify differential alternative splicing events that match a given user-defined pattern. We evaluated the performance of MATS using simulated and real RNA-Seq data sets. In the RNA-Seq analysis of alternative splicing events regulated by the epithelial-specific splicing factor ESRP1, we obtained a high RT–PCR validation rate of 86% for differential exon skipping events with a MATS FDR of <10%. Additionally, over the full list of RT–PCR tested exons, the MATS FDR estimates matched well with the experimental validation rate. Our results demonstrate that MATS is an effective and flexible approach for detecting differential alternative splicing from RNA-Seq data.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Improving RNA-Seq expression estimates by correcting for fragment bias

            The biochemistry of RNA-Seq library preparation results in cDNA fragments that are not uniformly distributed within the transcripts they represent. This non-uniformity must be accounted for when estimating expression levels, and we show how to perform the needed corrections using a likelihood based approach. We find improvements in expression estimates as measured by correlation with independently performed qRT-PCR and show that correction of bias leads to improved replicability of results across libraries and sequencing technologies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alternative splicing and evolution: diversification, exon definition and function.

              Over the past decade, it has been shown that alternative splicing (AS) is a major mechanism for the enhancement of transcriptome and proteome diversity, particularly in mammals. Splicing can be found in species from bacteria to humans, but its prevalence and characteristics vary considerably. Evolutionary studies are helping to address questions that are fundamental to understanding this important process: how and when did AS evolve? Which AS events are functional? What are the evolutionary forces that shaped, and continue to shape, AS? And what determines whether an exon is spliced in a constitutive or alternative manner? In this Review, we summarize the current knowledge of AS and evolution and provide insights into some of these unresolved questions.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                April 2012
                April 2012
                20 January 2012
                20 January 2012
                : 40
                : 8
                : e61
                Affiliations
                1Department of Biostatistics, 2Department of Internal Medicine, 3Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA 52242, 4Renal Division, Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, 5Department of Statistics, University of California, Los Angeles, CA 90095, USA, 6Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 and 7Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
                Author notes
                *To whom correspondence should be addressed. Tel: +1 319 384 3099; Fax: +1 319 384 3150; Email: yi-xing@ 123456uiowa.edu
                Article
                gkr1291
                10.1093/nar/gkr1291
                3333886
                22266656
                bad2d328-c9b4-4084-ad96-afb2c8da9e77
                © The Author(s) 2012. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 August 2011
                : 10 December 2011
                : 15 December 2011
                Page count
                Pages: 13
                Categories
                Methods Online

                Genetics
                Genetics

                Comments

                Comment on this article