15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biosynthesis of copper nanoparticles using aqueous Tilia extract: antimicrobial and anticancer activities

      research-article
      , ,  
      Heliyon
      Elsevier
      Materials science, Materials chemistry, Nanotechnology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A cost-effective method for the biosynthesis of copper nanoparticles (Cu-NPLs) using Tilia extract under optimum conditions has been presented. The use of Tilia extracts for the synthesis of Cu-NPLs has been investigated for the first time. The Cu-NPLs are stable due to in situ bio-capping by the Tilia extract residues. Formation of metallic Cu was revealed by UV-vis and XRD analyses. UV-vis of Cu-NPLs showed an SPR characteristic peak at 563 nm (energy bandgap = 2.1 eV). Morphology and size of the as-prepared Cu-NPLs were determined using SEM and TEM studies. TEM observations show that the produced Cu-NPLs are hemispherical in shape with different diameters in the range 4.7–17.4 nm. The electrical conductivity of the Cu-NPLs was determined as 1.04 × 10 −6 S cm -1 (at T = 120 K). The antimicrobial studies exhibited relatively high activity against pathogenic bacteria like Gram-positive & Gram-negative bacteria. Anticancer studies demonstrated the in vitro cytotoxicity value of Cu-NPLs against tested human colon cancer Caco-2 cells, human hepatic cancer HepG2 cells and human breast cancer Mcf-7 cells. To conclude, Cu-NPLs are promising in electronic devices and they possess a potential anticancer application for some human cancer therapy as well.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Green Synthesis of Metallic Nanoparticles via Biological Entities

          Nanotechnology is the creation, manipulation and use of materials at the nanometre size scale (1 to 100 nm). At this size scale there are significant differences in many material properties that are normally not seen in the same materials at larger scales. Although nanoscale materials can be produced using a variety of traditional physical and chemical processes, it is now possible to biologically synthesize materials via environment-friendly green chemistry based techniques. In recent years, the convergence between nanotechnology and biology has created the new field of nanobiotechnology that incorporates the use of biological entities such as actinomycetes algae, bacteria, fungi, viruses, yeasts, and plants in a number of biochemical and biophysical processes. The biological synthesis via nanobiotechnology processes have a significant potential to boost nanoparticles production without the use of harsh, toxic, and expensive chemicals commonly used in conventional physical and chemical processes. The aim of this review is to provide an overview of recent trends in synthesizing nanoparticles via biological entities and their potential applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines.

            The National Cancer Institute (NCI) is implementing a large-scale in vitro drug-screening program that requires a very efficient automated assay of drug effects on tumor cell viability or growth. Many laboratories worldwide have adopted a microculture assay based on metabolic reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). However, because of certain technical advantages to use of the protein-binding dye sulforhodamine B (SRB) in a large-scale screening application, a detailed comparison of data generated by each type of assay was undertaken. The MTT and SRB assays were each used to test 197 compounds, on simultaneous days, against up to 38 human tumor cell lines representing seven major tumor categories. On subsequent days, 38 compounds were retested with the SRB assay and 25 compounds were retested with the MTT assay. For each of these three comparisons, we tabulated the differences between the two assays in the ratios of test group values to control values (T/C) for cell survival; calculated correlation coefficients for various T/C ratios; and estimated the bivariate distribution of the values for IC50 (concentration of drug resulting in T/C values of 50%, or 50% growth inhibition) for the two assays. The results indicate that under the experimental conditions used and within the limits of the data analyses, the assays perform similarly. Because the SRB assay has practical advantages for large-scale screening, however, it has been adopted for routine use in the NCI in vitro antitumor screen.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Applications of biosynthesized metallic nanoparticles - a review.

              We present a comprehensive review of the applications of biosynthesized metallic nanoparticles (NPs). The biosynthesis of metallic NPs is the subject of a number of recent reviews, which focus on the various "bottom-up" biofabrication methods and characterization of the final products. Numerous applications exploit the advantages of biosynthesis over chemical or physical NP syntheses, including lower capital and operating expenses, reduced environmental impacts, and superior biocompatibility and stability of the NP products. The key applications reviewed here include biomedical applications, especially antimicrobial applications, but also imaging applications, catalytic applications such as reduction of environmental contaminants, and electrochemical applications including sensing. The discussion of each application is augmented with a critical review of the potential for continued development.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                20 December 2018
                December 2018
                20 December 2018
                : 4
                : 12
                : e01077
                Affiliations
                [1]Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt
                Author notes
                []Corresponding author. Reda.h@ 123456scinv.au.edu.eg
                Article
                S2405-8440(18)35994-2 e01077
                10.1016/j.heliyon.2018.e01077
                6304473
                30603710
                bdcb2d29-058e-4260-adc3-46254ccc5022
                © 2018 Published by Elsevier Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 24 September 2018
                : 2 December 2018
                : 18 December 2018
                Categories
                Article

                materials science,materials chemistry,nanotechnology

                Comments

                Comment on this article