53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Salinomycin induces calpain and cytochrome c-mediated neuronal cell death

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Salinomycin is a polyether antibiotic with properties of an ionophore, which is commonly used as cocciodiostatic drug and has been shown to be highly effective in the elimination of cancer stem cells (CSCs) both in vitro and in vivo. One important caveat for the potential clinical application of salinomycin is its marked neural and muscular toxicity. In the present study we show that salinomycin in concentrations effective against CSCs exerts profound toxicity towards both dorsal root ganglia as well as Schwann cells. This toxic effect is mediated by elevated cytosolic Na + concentrations, which in turn cause an increase of cytosolic Ca 2+ by means of Na +/Ca 2+ exchangers (NCXs) in the plasma membrane as well as the mitochondria. Elevated Ca 2+ then leads to calpain activation, which triggers caspase-dependent apoptosis involving caspases 12, 9 and 3. In addition, cytochrome c released from depolarized mitochondria directly activates caspase 9. Combined inhibition of calpain and the mitochondrial NCXs resulted in significantly decreased cytotoxicity and was comparable to caspase 3 inhibition. These findings improve our understanding of mechanisms involved in the pathogenesis of peripheral neuropathy and are important to devise strategies for the prevention of neurotoxic side effects induced by salinomycin.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondria and apoptosis.

          D Green, J Reed (1998)
          A variety of key events in apoptosis focus on mitochondria, including the release of caspase activators (such as cytochrome c), changes in electron transport, loss of mitochondrial transmembrane potential, altered cellular oxidation-reduction, and participation of pro- and antiapoptotic Bcl-2 family proteins. The different signals that converge on mitochondria to trigger or inhibit these events and their downstream effects delineate several major pathways in physiological cell death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of selective inhibitors of cancer stem cells by high-throughput screening.

            Screens for agents that specifically kill epithelial cancer stem cells (CSCs) have not been possible due to the rarity of these cells within tumor cell populations and their relative instability in culture. We describe here an approach to screening for agents with epithelial CSC-specific toxicity. We implemented this method in a chemical screen and discovered compounds showing selective toxicity for breast CSCs. One compound, salinomycin, reduces the proportion of CSCs by >100-fold relative to paclitaxel, a commonly used breast cancer chemotherapeutic drug. Treatment of mice with salinomycin inhibits mammary tumor growth in vivo and induces increased epithelial differentiation of tumor cells. In addition, global gene expression analyses show that salinomycin treatment results in the loss of expression of breast CSC genes previously identified by analyses of breast tissues isolated directly from patients. This study demonstrates the ability to identify agents with specific toxicity for epithelial CSCs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes.

              Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.
                Bookmark

                Author and article information

                Journal
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group
                2041-4889
                June 2011
                02 June 2011
                1 June 2011
                : 2
                : 6
                : e168
                Affiliations
                [1 ]simpleDepartment of Neurology, Charite-Universitätsmedizin Berlin , Berlin, Germany
                [2 ]simpleCluster of Excellence NeuroCure, Charite-Universitätsmedizin Berlin , Berlin, Germany
                [3 ]simpleCenter for Stroke Research Berlin, Charite-Universitätsmedizin Berlin , Berlin, Germany
                Author notes
                [* ]simpleKlinik für Neurologie, Charité-Universitätsmedizin Berlin , Chariteplatz 1, Berlin 10117, Germany. Tel: +49 30 450 560 137; Fax: +49 30 450 560 932; E-mail: wolfgang.boehmerle@ 123456charite.de
                Article
                cddis201146
                10.1038/cddis.2011.46
                3168989
                21633391
                be511bc9-55d3-4a0b-9826-74483305b1ae
                Copyright © 2011 Macmillan Publishers Limited

                This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 19 January 2011
                : 05 April 2011
                : 21 April 2011
                Categories
                Original Article

                Cell biology
                cancer stem cells,sodium calcium exchanger,polyneuropathy,dorsal root ganglia,salinomycin

                Comments

                Comment on this article