2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Wide Analysis of Nubian Ibex Reveals Candidate Positively Selected Genes That Contribute to Its Adaptation to the Desert Environment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          The Nubian ibex is a wild relative of the domestic goat found in hot deserts of Northern Africa and Arabia. The domestic goat is an important livestock species that is mainly found in arid and semi-arid regions of Africa and Asia. The Nubian ibex is well adapted to challenging environments in hot deserts characterized by high diurnal temperatures, intense solar radiation, and scarce water resources. It is therefore important to understand the genetic basis of its adaptation for scientific and economic importance. To identify genes with adaptive traits, the Nubian ibex genome was sequenced and compared with that of related mammals. We identified twenty-five genes under selection in the Nubian ibex that play diverse biological roles such as immune response, visual development, signal transduction, and reproduction. Three other genes under adaptive evolution involved in protective functions of the skin against damaging solar radiation in the desert were identified in Nubian ibex genome. Our finding provides valuable genomic insights into the adaptation of Nubian ibex to desert environments. The genomic information generated in this study can be used in developing appropriate breeding programs aimed at enhancing adaptation of local goats to less favorable habitats in response to changing climates.

          Abstract

          The domestic goat ( Capra hircus) is an important livestock species with a geographic range spanning all continents, including arid and semi-arid regions of Africa and Asia. The Nubian ibex ( Capra nubiana), a wild relative of the domestic goat inhabiting the hot deserts of Northern Africa and the Arabian Peninsula, is well-adapted to challenging environments in hot deserts characterized by intense solar radiation, thermal extremes, and scarce water resources. The economic importance of C. hircus breeds, as well as the current trends of global warming, highlights the need to understand the genetic basis of adaptation of C. nubiana to the desert environments. In this study, the genome of a C. nubiana individual was sequenced at an average of 37x coverage. Positively selected genes were identified by comparing protein-coding DNA sequences of C. nubiana and related species using dN/dS statistics. A total of twenty-two positively selected genes involved in diverse biological functions such as immune response, protein ubiquitination, olfactory transduction, and visual development were identified. In total, three of the twenty-two positively selected genes are involved in skin barrier development and function (ATP binding cassette subfamily A member 12, Achaete-scute family bHLH transcription factor 4, and UV stimulated scaffold protein A), suggesting that C. nubiana has evolved skin protection strategies against the damaging solar radiations that prevail in deserts. The positive selection signatures identified here provide new insights into the potential adaptive mechanisms to hot deserts in C. nubiana.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trimmomatic: a flexible trimmer for Illumina sequence data

          Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Sequence Alignment/Map format and SAMtools

            Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: rd@sanger.ac.uk
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Basic local alignment search tool.

              A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score. Recent mathematical results on the stochastic properties of MSP scores allow an analysis of the performance of this method as well as the statistical significance of alignments it generates. The basic algorithm is simple and robust; it can be implemented in a number of ways and applied in a variety of contexts including straightforward DNA and protein sequence database searches, motif searches, gene identification searches, and in the analysis of multiple regions of similarity in long DNA sequences. In addition to its flexibility and tractability to mathematical analysis, BLAST is an order of magnitude faster than existing sequence comparison tools of comparable sensitivity.
                Bookmark

                Author and article information

                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                22 November 2020
                November 2020
                : 10
                : 11
                : 2181
                Affiliations
                [1 ]School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, P.O. Box 447, Arusha 23306, Tanzania; morris.agaba@ 123456nm-aist.ac.tz
                [2 ]Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya; j.domelevoentfellner@ 123456cgiar.org (J.-B.D.E.); josiah.mutuku@ 123456wave-center.org (J.M.M.)
                [3 ]International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya; s.oyola@ 123456cgiar.org
                [4 ]South African National Biodiversity Institute, Pretoria, P.O. Box 754, Pretoria 0001, South Africa; A.Kotze@ 123456sanbi.org.za
                [5 ]Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
                [6 ]Current Address: Central and West African Virus Epidemiology (WAVE), Pôle Scientifique et d’Innovation de Bingerville, Université Félix Houphouët-Boigny, Abidjan 01 BP V34, Cote d’Ivoire
                Author notes
                [* ]Correspondence: chebiiv@ 123456nm-aist.ac.tz
                Author information
                https://orcid.org/0000-0002-6425-7345
                Article
                animals-10-02181
                10.3390/ani10112181
                7700370
                33266380
                beb429ac-bfaf-4df5-981b-66329729a907
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 September 2020
                : 03 November 2020
                Categories
                Article

                capra nubiana genome,positive selection,desert adaptation,dn/ds analysis,solar radiation

                Comments

                Comment on this article