12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long non-coding RNA CASC2 improved acute lung injury by regulating miR-144-3p/AQP1 axis to reduce lung epithelial cell apoptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and objective

          Apoptosis of lung epithelial cell is implicated in the pathogenesis of acute lung injury (ALI). To study the protective effect and mechanism of cancer susceptibility candidate 2 (CASC2) on reducing lung epithelial cell apoptosis after LPS inducing acute lung injury in mice.

          Methods and results

          The ALI mice model was performed by intratracheally instilling with lipopolysaccharide (LPS). The CASC2 expression detected by quantitative real-time polymerase chain reaction was significantly decreased in LPS-induced A549 cell and ALI mice model. LPS induced A549 cell apoptosis, while transfection with pcDNA-CASC2 reversed the increased cell apoptosis, suggesting overexpression of CASC2 inhibited LPS-induced A549 cell apoptosis. In addition, we found that miR-144-3p expression were opposite to CASC2, while Aquaporin-1 (AQP1) expression was opposite to miR-144-3p in LPS-induced A549 cell and ALI mice model. The RNA immunoprecipitation and RNA pull-down assay demonstrated that CASC2 could function as a miR-144-3p decoy. The luciferase reporter assay revealed that AQP1 was a target of miR-144-3p in A549 cell. And then, further in vitro studied showed that CASC2 controlled AQP1 expression by regulating miR-144-3p, and LPS induced A549 cell apoptosis by regulating CASC2/miR-144-3p/AQP1 axis. At last, after injection with lentivirus-expressing CASC2 or control lentivirus, the mice were intratracheally instilled with LPS. Comparing to the mice injected with pcDNA, the mice injected with pcDNA-CASC2 had a significantly reduced lung wet–dry weight ratio.

          Conclusions

          Long non-coding RNA CASC2 improved acute lung injury by regulating miR-144-3p/AQP1 axis to reduce lung epithelial cell apoptosis.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Long noncoding RNA associated-competing endogenous RNAs in gastric cancer

          Some long noncoding RNAs (lncRNAs) play important roles in the regulation of gene expression by acting as competing endogenous RNAs (ceRNAs). However, the roles of lncRNA associated-ceRNAs in oncogenesis are not fully understood. Here, based on lncRNA microarray data of gastric cancer, bioinformatic algorithm miRcode and microRNA (miRNA) targets database TarBase, we first constructed an lncRNA-miRNA-mRNA network. Then, we confirmed it by data of six types of other cancer including head and neck squamous cell carcinoma, prostate cancer, papillary thyroid carcinoma, pituitary gonadotrope tumors, ovarian cancer, and chronic lymphocytic leukemia. The results showed a clear cancer-associated ceRNA network. Eight lncRNAs (AC009499.1, GACAT1, GACAT3, H19, LINC00152, AP000288.2, FER1L4, and RP4-620F22.3) and nine miRNAs (miR-18a-5p, miR-18b-5p, miR-19a-3p, miR-20b-5p, miR-106a-5p, miR-106b-5p, miR-31-5p, miR-139-5p, and miR-195-5p) were involved. For instance, through its miRNA response elements (MREs) to compete for miR-106a-5p, lncRNA-FER1L4 regulates the expression of PTEN, RB1, RUNX1, VEGFA, CDKN1A, E2F1, HIPK3, IL-10, and PAK7. Furthermore, cellular experimental results indicated that FER1L4-small interfering RNA (siRNA) simultaneously suppressed FER1L4 and RB1 mRNA level. These results suggest that lncRNAs harbor MREs and play important roles in post-transcriptional regulation in cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Modified Annexin V/Propidium Iodide Apoptosis Assay For Accurate Assessment of Cell Death

            Studies of cellular apoptosis have been significantly impacted since the introduction of flow cytometry-based methods. Propidium iodide (PI) is widely used in conjunction with Annexin V to determine if cells are viable, apoptotic, or necrotic through differences in plasma membrane integrity and permeability1,2. The Annexin V/ PI protocol is a commonly used approach for studying apoptotic cells3. PI is used more often than other nuclear stains because it is economical, stable and a good indicator of cell viability, based on its capacity to exclude dye in living cells 4,5. The ability of PI to enter a cell is dependent upon the permeability of the membrane; PI does not stain live or early apoptotic cells due to the presence of an intact plasma membrane 1,2,6. In late apoptotic and necrotic cells, the integrity of the plasma and nuclear membranes decreases7,8, allowing PI to pass through the membranes, intercalate into nucleic acids, and display red fluorescence 1,2,9. Unfortunately, we find that conventional Annexin V/ PI protocols lead to a significant number of false positive events (up to 40%), which are associated with PI staining of RNA within the cytoplasmic compartment10. Primary cells and cell lines in a broad range of animal models are affected, with large cells (nuclear: cytoplasmic ratios <0.5) showing the highest occurrence10. Herein, we demonstrate a modified Annexin V/ PI method that provides a significant improvement for assessment of cell death compared to conventional methods. This protocol takes advantage of changes in cellular permeability during cell fixing to promote entry of RNase A into cells following staining. Both the timing and concentration of RNase A have been optimized for removal of cytoplasmic RNA. The result is a significant improvement over conventional Annexin V/ PI protocols (< 5% events with cytoplasmic PI staining).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The long noncoding RNA CASC2 functions as a competing endogenous RNA by sponging miR-18a in colorectal cancer

              Recent evidence highlights the crucial regulatory roles of long noncoding RNAs (lncRNA) in tumor biology. In colorectal cancer (CRC), the expression of several lncRNAs is dysregulated and play essential roles in CRC tumorigenesis. However, the potential biological roles and regulatory mechanisms of the novel human lncRNA, CASC2 (cancer susceptibility candidate 2), in tumor biology are poorly understood. In this study, CASC2 expression was significantly decreased in CRC tissues and CRC cell lines, and decreased expression was significantly more frequent in patients with advanced tumor-node-metastasis stage disease (TNM III and IV) (P = 0.028). Further functional experiments indicate that CASC2 could directly upregulate PIAS3 expression by functioning as a competing endogenous RNA (ceRNA) for miR-18a. This interactions leads to the de-repression of genes downstream of STAT3 and consequentially inhibition of CRC cell proliferation and tumor growth in vitro and in vivo by extending the G0/G1-S phase transition. Taken together, these observations suggest CASC2 as a ceRNA plays an important role in CRC pathogenesis and may serve as a potential target for cancer diagnosis and treatment.
                Bookmark

                Author and article information

                Contributors
                moulei526@163.com
                yiqinxiongou@163.com
                zhaosi054@163.com
                yueyun949428@163.com
                rongqing.sun@126.com
                Journal
                Cell Biosci
                Cell Biosci
                Cell & Bioscience
                BioMed Central (London )
                2045-3701
                26 February 2018
                26 February 2018
                2018
                : 8
                : 15
                Affiliations
                GRID grid.412633.1, Department of Critical Care Medicine, , The First Affiliated Hospital of Zhengzhou University, ; No.1 Jianshe East Road, Zhengzhou, 450052 Henan China
                Article
                205
                10.1186/s13578-018-0205-7
                5828141
                29492259
                c09144a0-3732-4717-810c-1a9d60c75ce0
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 5 September 2017
                : 20 January 2018
                Categories
                Research
                Custom metadata
                © The Author(s) 2018

                Cell biology
                lncrna casc2,acute lung injury,lung epithelial cells apoptosis,mir-144-3p,aqp1
                Cell biology
                lncrna casc2, acute lung injury, lung epithelial cells apoptosis, mir-144-3p, aqp1

                Comments

                Comment on this article