69
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Olfactory Transcriptomes of Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The olfactory (OR) and vomeronasal receptor (VR) repertoires are collectively encoded by 1700 genes and pseudogenes in the mouse genome. Most OR and VR genes were identified by comparative genomic techniques and therefore, in many of those cases, only their protein coding sequences are defined. Some also lack experimental support, due in part to the similarity between them and their monogenic, cell-specific expression in olfactory tissues. Here we use deep RNA sequencing, expression microarray and quantitative RT-PCR in both the vomeronasal organ and whole olfactory mucosa to quantify their full transcriptomes in multiple male and female mice. We find evidence of expression for all VR, and almost all OR genes that are annotated as functional in the reference genome, and use the data to generate over 1100 new, multi-exonic, significantly extended receptor gene annotations. We find that OR and VR genes are neither equally nor randomly expressed, but have reproducible distributions of abundance in both tissues. The olfactory transcriptomes are only minimally different between males and females, suggesting altered gene expression at the periphery is unlikely to underpin the striking sexual dimorphism in olfactory-mediated behavior. Finally, we present evidence that hundreds of novel, putatively protein-coding genes are expressed in these highly specialized olfactory tissues, and carry out a proof-of-principle validation. Taken together, these data provide a comprehensive, quantitative catalog of the genes that mediate olfactory perception and pheromone-evoked behavior at the periphery.

          Author Summary

          The sense of smell in mice involves the detection of odors and pheromones by many hundreds of olfactory and vomeronasal receptors. The genes that encode these receptors account for around 5% of the whole gene catalog, but they are poorly understood because they are very similar to each other, and are thought to be turned on randomly in only a small number of cells. Here we use multiple gene expression technologies to curate and measure the activity of all the genes involved in the detection of odors and find evidence of many new ones. We show that most genes encoding olfactory and vomeronasal receptors have complex, multi-exonic structures that generate different isoforms. We find that some receptors are consistently more abundant in the nose than others, which suggests they are not turned on randomly. This may explain why mice are particularly sensitive to some odors, but less attuned to others. We find that overall males and females differ very little in gene expression, despite having altered behavioral responses to the same odors. Thus diversity in receptor expression can explain differences in odor sensitivity, but does not appear to dictate whether sex pheromones are differentially detected by males or females.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of novel transcripts in annotated genomes using RNA-Seq.

          We describe a new 'reference annotation based transcript assembly' problem for RNA-Seq data that involves assembling novel transcripts in the context of an existing annotation. This problem arises in the analysis of expression in model organisms, where it is desirable to leverage existing annotations for discovering novel transcripts. We present an algorithm for reference annotation-based transcript assembly and show how it can be used to rapidly investigate novel transcripts revealed by RNA-Seq in comparison with a reference annotation. The methods described in this article are implemented in the Cufflinks suite of software for RNA-Seq, freely available from http://bio.math.berkeley.edu/cufflinks. The software is released under the BOOST license. cole@broadinstitute.org; lpachter@math.berkeley.edu Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Allelic inactivation regulates olfactory receptor gene expression.

            We suggest a model in which a hierarchy of controls is exerted on the family of odorant receptor genes to assure that a sensory neuron expresses a single receptor from a family of 1000 genes. We propose that a cis-regulatory element directs the stochastic expression of only one gene from a large array of linked receptor genes. Moreover, only one allelic array encoding multiple receptor genes is active in an individual neuron. We demonstrate that in a neuron expressing a given receptor, expression derives exclusively from one allele. In addition, we observe that alleles encoding the odorant receptors are replicated asynchronously, a phenomenon consistently associated with allelic inactivation. This model, involving inactivation of one allelic array and cis control of the active array, provides a mechanism such that individual neurons express one or a small number of receptors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of protein pheromones that promote aggressive behaviour.

              Mice use pheromones, compounds emitted and detected by members of the same species, as cues to regulate social behaviours such as pup suckling, aggression and mating. Neurons that detect pheromones are thought to reside in at least two separate organs within the nasal cavity: the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). Each pheromone ligand is thought to activate a dedicated subset of these sensory neurons. However, the nature of the pheromone cues and the identity of the responding neurons that regulate specific social behaviours are largely unknown. Here we show, by direct activation of sensory neurons and analysis of behaviour, that at least two chemically distinct ligands are sufficient to promote male-male aggression and stimulate VNO neurons. We have purified and analysed one of these classes of ligand and found its specific aggression-promoting activity to be dependent on the presence of the protein component of the major urinary protein (MUP) complex, which is known to comprise specialized lipocalin proteins bound to small organic molecules. Using calcium imaging of dissociated vomeronasal neurons (VNs), we have determined that the MUP protein activates a sensory neuron subfamily characterized by the expression of the G-protein Galpha(o) subunit (also known as Gnao) and Vmn2r putative pheromone receptors (V2Rs). Genomic analysis indicates species-specific co-expansions of MUPs and V2Rs, as would be expected among pheromone-signalling components. Finally, we show that the aggressive behaviour induced by the MUPs occurs exclusively through VNO neuronal circuits. Our results substantiate the idea of MUP proteins as pheromone ligands that mediate male-male aggression through the accessory olfactory neural pathway.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                September 2014
                4 September 2014
                : 10
                : 9
                : e1004593
                Affiliations
                [1 ]Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
                [2 ]European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
                University of Michigan, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: XIS DWL. Performed the experiments: XIS MOL LRS. Analyzed the data: XIS MOL DWL. Wrote the paper: XIS DWL.

                Article
                PGENETICS-D-14-00409
                10.1371/journal.pgen.1004593
                4154679
                25187969
                c3554333-7238-4138-876a-644e897902c3
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 February 2014
                : 8 July 2014
                Page count
                Pages: 17
                Funding
                This work was supported by the Wellcome Trust (Grant No. 098051) and the EMBO Young Investigator Programme. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Transcriptome Analysis
                Genome Expression Analysis
                Genetics
                Gene Expression
                Gene Identification and Analysis
                Genomics
                Molecular Genetics
                Neuroscience
                Sensory Systems
                Olfactory System
                Research and Analysis Methods
                Bioassays and Physiological Analysis
                Microarrays
                Model Organisms
                Animal Models
                Mouse Models

                Genetics
                Genetics

                Comments

                Comment on this article